
Ficl - Object Forth Wraps C Structures
20th FORML Conference

1 November 1998
John Sadler

john_sadler@alum.mit.edu

Abstract
Ficl is an ANS Forth written in C, designed specifically to be embedded in
programs written in C. Ficl combines a simple way to import C functions with a
novel object oriented syntax that is capable of wrapping data structures compiled
in other languages. In so doing, Ficl can act as an object oriented front-end for
small systems written in either Forth or C.

Introduction: Why Another Freeware Forth?
Why write another freeware Forth? There are large numbers of them available
on the FIG web site, and more in Europe and elsewhere. Several are written in
C, and some sport extensive Windows programming capabilities, object oriented
extensions, and other syntactical goodies that help with larger coding projects.
I suppose that there are several reasons I wrote Ficl. First, I’ve had some
difficulty getting C programmers to embrace Forth even as an adjunct to their
regular coding in C or C++. The last Forth interpreter I used in a product had a
kernel written in 68K assembly language. I understood it quite well, but everyone
else thought it was ugly to maintain. This is a reasonable complaint in the sense
that conservative engineers want to have a good mental model of the tools they
use.
To address this problem, I wrote Ficl in ANSI C, and designed it to minimize the
porting requirements to systems that have C runtime environments. You can port
Ficl to any 32 bit microprocessor by taking a few minutes to inspect the main
header file, possibly redefining some simple typedefs, and by filling in three
function stubs. Two of these map very closely to the Standard C functions malloc
and free. The third gets text out of the interpreter – this solves a common
problem in mapping the C runtime to small systems: no Standard I/O or file
system.
While lots of programmers know C, this language is not optimally suited to
prototyping and rapid development for reasons that will be obvious to
experienced Forth programmers: the time and typing overhead it takes to create
even a simple program. There is clearly an opportunity for a programming
environment like Forth even in organizations where C or C++ are the intended
production language. Ficl attempts to address this niche by being very
straightforward to integrate into C programs while requiring minimal system
resources. Ficl allows C functions to be exported to the interpreter through a
programming interface that does not require editing the Ficl sources. It also
provides object oriented programming extensions that work well with C
programs. This last feature might provide a low-overhead path to OOP for

embedded systems developers who find the barriers to entry of C++ too
daunting.
One reason for using a standard language rather than inventing a new one is
that it should be possible to find books that explain the language to new users,
rather than having to write one. Further, the time invested in learning a standard
language seems more likely to be repaid by future applications. That’s why Ficl
conforms to the Forth DPANS (and presumably the ANS as well).
Taken together, here’s the list of requirements I wrote when starting to design
Ficl [6]:
• Scripting, prototyping, and extension language for programs written in C or

C++
• Target 32 bit microprocessors with a C runtime environment
• Minimize porting overhead given the above constraints
• Conform to the DPANS, providing the CORE word set plus SEARCH and

LOCAL optional word sets
• Provide object oriented programming extensions
• Make the code as transparent as possible
• Provide a means to export C functions to the interpreter
 My web searches turned up nothing that met these goals, so here it is. One
additional reason for addressing the scripting/prototyping niche is my hope that
Ficl will be a “stealth” Forth – that people might adopt Ficl for its ease of
integration, and be drawn to Forth once they realize that it’s much more than a
scripting language. We’ll see.

 Ficl’s C/Forth Interface
 Many other Forths written in C have large switch statements at the core of their
inner interpreters. In this model, primitives are assigned small integer tokens. To
add a Forth wrapper to application specific code written in C, you have to add a
new case to the switch for each function to be exported. This forces external
code interfaces to be concentrated in the token interpreter rather than co-located
with functionally related code. This presents maintenance problems in most
cases.
 We can remedy that situation by adding a Forth primitive that calls a C function
indirectly through a stored address, similar to the way DOES> vectors to code
defined in another word. This might permit an interface from Forth to C: discover
the address of some function, execute Forth code to create a word and cause
the new word to call the C function when executed. This has the disadvantage
that it’s not automatic to know the address of a C function from Forth.
 The Forth interpreter can fix this with an interface function that host programs
can call to bind application domain functions to words in the dictionary. If we
require that all C functions exported to our Forth have the same signature
(number and type of parameters, and return type), then the builder function

would need only the address of the target function, and the name to bind in the
dictionary. The builder would append a definition to the dictionary that calls the
target C function supplying whatever parameters the convention specifies.
Here’s a sample prototype for such a builder:

 void ficlBuild(char *name, void *function);

 An alternative is to allow the interface to specify the number of cells to pop off
the parameter stack and push onto the C call stack before invoking the C
interface function. This makes it possible to wrap a broader range of C functions
in Forth words, as long as all their parameters are properly aligned. It requires
the builder to provide a means to specify the number and width of parameters to
push on the C calling stack, and the size of the return value, if any. The simplest
way to do this is to require that all interface functions have parameters of one
specified width. The builder function might then look like this:

 void ficlBuild(char *name, void *function, int nParams, int
nReturn);

 Otherwise, there needs to be a more complex protocol for specifying each
parameter’s width. The variable parameter designs require information about the
function that the C compiler neither supplies nor checks for consistency. On the
other hand, the constant signature design requires a special wrapper function to
be written for each exported word. The wrapper function’s job is to marshal
parameters from Forth to C explicitly. An advantage of this approach is that the
compiler can check that the target function call has the correct number and
widths of parameters. Ficl uses this wrapper function technique to import C
functions.
 Now that there is a way to import functions written in C to our Forth, why not get
rid of the switch statement and write all of the primitives this way? Ficl does this,
reducing the inner interpreter to a small loop. Now application-specific words
have exactly the same execution mechanics as any other Forth primitive.
 The wrapper function technique generally requires that interface functions be
written explicitly for Ficl. This is not hard. Ficl’s interface builder really is called
ficlBuild(), and it expects three parameters: the name of the word to be created,
a pointer to a function to execute, and a bit-field that specifies IMMEDIATE and
compile-only attributes. When the wrapper function executes, it gets as its one
parameter a pointer to the Ficl virtual machine that’s executing it, and it returns
nothing. The wrapper function can use the virtual machine pointer to manipulate
the stacks and the input buffer.
 Ficl provides public functions to push and pop stacks, perform run-time stack
depth checking, and manipulate the dictionary. A typical wrapper function pops
some parameters off Ficl’s stack, passes them to a C function, and pushes the
result onto Ficl’s stack again.
 Host applications get text to Ficl by calling ficlExec. This function causes a
virtual machine to execute a chunk of text. FiclExec is reentrant, so wrapper
functions can use it too. This is another distinction between Ficl and other Forths
written in C: Ficl’s outer interpreter does not expect to get more input text from

any specific place – it just returns control to the host application when it gets
hungry.

 Ficl Object Goals
 Back on the Web, I started looking for established practice in Object extensions
for Forth. It appears that most Forth object extensions [4,7] model their internals
after C++ in the sense that each class contains a pointer table (a vtable in C++
jargon) that maps small integer messages to execution tokens that are the
corresponding methods of the class. In order to create a class, you must first
create a message map that has a slot for each method of the class. Each class
contains a pointer to the message map, among other things. This appears to
impose a couple of unpleasant restrictions: derived classes use the same
message maps as their parents, so a derived class cannot add methods, it can
only override methods defined in its parent class. In addition, the words that
represent messages to the class are in a public wordlist. It’s possible for two
unrelated classes to define the same message with different values.
 I wanted Ficl to have a simple and flexible object model that emphasized what I
saw as the two original motives for developing OO programming in the first
place: safety and reuse. Safety in this case means to make sure that data and
the operations that are defined on the data are always matched. Inheritance
provides the reuse mechanism.
 Classic definitions of object oriented programming [1,2] list the three essential
attributes of an OO language as encapsulation, polymorphism, and inheritance.
We mentioned encapsulation and inheritance in the previous paragraph.
Polymorphism, the mapping of a particular message to different methods
depending on the class of the receiver, implies late binding. In order to be safe, I
decided to make late binding Ficl's default behavior, and to provide early binding
upon request for efficiency. Late binding guarantees that the appropriate method
will be invoked for a given message, while early binding can cause
misunderstandings.
 In order to realize the design goal of full interoperation between Ficl and its host
program, I added the requirement that Ficl’s object model be somehow capable
of acting as an adapter, to model data structures written in C. Here’s the list of
Ficl Object design goals [6]:
• Ficl objects are normally late bound for safety (late binding guarantees that

the appropriate method will always be invoked for a particular object). Early
binding is also available, provided you know the object's class at compile-
time.

• Support single inheritance, aggregation, and arrays of objects.
• Classes have independent name spaces for their methods: methods are only

visible in the context of a class or object.
• Methods can be overridden or added in subclasses
• No fixed limit on the number of methods of a class or subclass

• Ficl OOP syntax is regular and unified over classes and objects. In Ficl,
classes are objects. Class methods include the ability to subclass and
instantiate.

• Adapt legacy data structures with object wrappers. You can model a structure
in a Ficl class, and create an instance that refers to an address in memory
that holds an instance of the structure. The ref object can manipulate the
structure directly. This lets you wrap data structures written and instantiated
in C.

• Be thread-safe so that concurrent virtual machines can use objects

 Ficl Object Theory
 The most significant departure Ficl takes from other OO Forths [4,7] is that Ficl
represents an object as a cell pair on the stack. One cell points to the instance
data, and the other points to the class:

 (instance-addr class-addr)

 Whenever a named Ficl object executes, it leaves this "signature". All methods
expect a class and instance on the stack when they execute, too. In many other
OO languages, including C++, instances contain information about their classes
(a vtable pointer, for example). By making this pairing explicit rather than implicit,
Ficl can be OO about chunks of data that don't realize that they are objects,
without sacrificing any robustness for native objects. Whenever you create an
object in Ficl, you specify its class. After that, the object always pushes its class
and the address of its payload when invoked by name. To wrap some external
data structure with an object model, you first create the class that models the
structure, then tell the class to make a ref instance of itself, supplying the
address of the data structure as a parameter. The new ref instance behaves as if
it is a native Ficl object.
 Classes are special kinds of objects that store the methods of their instances,
the size of an instance's payload, and a parent class pointer. Classes
themselves are instances of a special base class called METACLASS, and all
classes inherit from class OBJECT. This results in a very simple syntax for
constructing and using objects. Class methods include subclassing (SUB),
creating initialized and uninitialized instances (NEW and INSTANCE), and
creating reference instances (REF). Classes also have methods for
disassembling their methods (SEE), identifying themselves (ID), and listing their
pedigree (PEDIGREE). All objects inherit methods for initializing instances and
arrays of instances, for performing array operations, and for getting information
about themselves.
 All classes in Ficl derive from the common base class OBJECT. All classes are
instances of METACLASS. This means that classes are objects, too.
METACLASS implements the methods for messages sent to classes. Class
methods create instances and subclasses, and give information about the class.
Classes have exactly three elements:

• The address (.CLASS) of a parent class, or zero if it's a base class (only
OBJECT and METACLASS have this property)

• The size (.SIZE) in address units of an instance of the class
• A wordlist ID (.WID) for the methods of the class

In the figure below, METACLASS and OBJECT are system-supplied classes.
The others are contrived to illustrate the relationships among derived classes,
instances, and the two system base classes. The dashed line with an arrow at
the end indicates that the object/class at the arrow end is an instance of the
class at the other end. The vertical line with a triangle denotes inheritance.
Note for the curious: METACLASS behaves like a class - it responds to class
messages and has the same properties as any other class. If you want to twist
your brain in knots, you can think of METACLASS as an instance of itself.

Ficl OOP Syntax
The most important Ficl OOP word is -->. This word, which I pronounce late-
bind for lack of a better name, binds a message to an object:

politician --> get-tough-on-something \ it’s an election year

There is an early bind operator too. It’s only defined while compiling, and since it
binds early, its symbol is shorter: =>. To use early binding, you must specify a
class and message. Early-bind finds the corresponding method and compiles its
execution token into the current definition. To make this process a bit cleaner
syntactically, Ficl classes and the early-bind operator are IMMEDIATE.
To create a Ficl class, you have to subclass OBJECT or some other class that
has OBJECT at the base of its pedigree. Any class can respond to the SUB
method, creating a subclass of itself:

bourgeoisie --> sub proletariat

Having done that, you next define instance variables and methods. Instance
variables are declared using the structure syntax of John Hayes [4]. Instance
variable builder words reserve space in the class for members, and create
methods that push the offsets of their member variables when executed. You
can also override methods and define new methods simply by making colon
definitions in the context of the class. To end a class context, you invoke END-
CLASS. Class definitions can be nested to create data structures that refer to
each other – partially complete class definitions are visible in the dictionary.
Here’s an example of an actual Ficl class definition:

object --> sub c-ref
 cell: .class
 cell: .instance

: get (inst class -- refinst refclass)
drop 2@ ;

: set (refinst refclass inst class --)
drop 2! ;

end-class
This class stores a pointer to an object. It has two member variables: the
address of instance variables and the address of the class that describes them.
The get and set methods do the obvious – they perform size-appropriate fetch
and store for the instance variables.
To create an instance of c-ref, we can send the new class another message:

c-ref --> new ref-instance

The c-ref class makes an instance of itself named ref-instance, and clears it.
Storage for the new instance comes from the dictionary – Ficl does not yet
support allocation from a heap.
For complete information and a tutorial on Ficl’s OO syntax, please see the Ficl
release notes [6]

Wrapping C Structures
We can use the OOP facilities to wrap data structures in C once we create some
simple base classes that model scalar data types of C. Ficl provides several of
these, including 1, 2, and 4 byte scalar quantities and pointers to them. Here’s
an example from the Ficl sources of a C structure and its Ficl object model:

In C:
/*
** Ficl models memory as a contiguous space divided into
** words in a linked list called the dictionary.
** A FICL_WORD starts each entry in the list.
** Version 1.02: space for the name characters is allotted from
** the dictionary before the word header
*/
typedef struct ficl_word
{
 struct ficl_word *link; /* Previous word in the dictionary */
 UNS16 hash;
 UNS8 flags; /* Immediate, Smudge, Compile-only */
 FICL_COUNT nName; /* Number of chars in word name */
 char *name; /* First nFICLNAME chars of word name */
 FICL_CODE code; /* Native code to execute the word */
 CELL param[1]; /* First data cell of the word */
} FICL_WORD;

Now in Ficl’s OO Forth:
object subclass1 c-word
 c-word ref: .link
 c-2byte obj: .hashcode
 c-byte obj: .flags
 c-byte obj: .nName
 c-bytePtr obj: .pName
 c-cellPtr obj: .pCode
 c-4byte obj: .param0
 \ Push word's name...
 : get-name (inst class -- c-addr u)
 2dup
 --> .pName --> get-ptr -rot
 --> .nName --> get
 ;
 : next (inst class – link-inst class)
 --> .link ;
 : info
 ." ficl word: "
 2dup --> get-name type cr
 ." hash = "
 2dup --> .hashcode --> get x. cr
 ." flags = "
 --> .flags --> get x. cr
 ;
end-class

The first line creates c-word, a class that inherits directly from object. The
next line is the first member variable declaration. It declares .link as a ref to c-
word. A ref member is a pointer to an object of fixed class. in this case, .link
always pushes c-word in the class part of its signature when invoked. There is
no way to assign a value to a ref member variable – this facility is only useful for
modeling pre-initialized structures. If we wanted to create a native Ficl class with
a member that pointed to another object, we could simply incorporate a member

1 subclass is equivalent to --> sub

variable of type c-ref instead, and have the ability to use its set and get methods
as shown earlier.
The next six lines tile various scalar instance variables into the class. We have
to know how the C compiler will pad structures, and how much space it allots for
each of the scalar types. In this case, I’ve assumed that the compiler packs as
tightly as possible. By the way, all Ficl internal structures are designed to even-
align double byte members and quad-align quad-byte members. This should
help keep the member offsets invariant over compiler alignment behavior (but it’s
not a guarantee).
Following the member variable declarations (by convention, not by requirement)
are some simple method definitions. Get-name pushes the (c-addr u)
representation of the word’s name. It uses the get method twice – first to get the
address, and next to get the count. It’s handy to have –rot in this context – I like
to think of it as one-and-a-half-swap because it has the effect of swapping a
single cell on top of the stack with a cell-pair underneath. There is no “self” or
“this” variable in Ficl OOP – objects get manipulated only via the stack. This
simplifies the syntax quite a bit, at the cost of some extra stack twiddling. (Stack
twiddling builds character in Forth programmers.)
The method called next follows the word’s link to the next one in the dictionary
link list. As you can see from the source, it’s just an alias for .link.
Now that we have a model for a Ficl word, we can wrap an actual word with it by
making a ref instance that refers to the word:

‘ c-ptr c-word --> ref ptrref

Makes a ref called ptrref that thinks it’s the word c-ptr…
ptrref --> get-name type cr \ prints “c-ptr”
ptrref --> next --> get-name type cr \ prints “c-2byte”

The FICL_WORD struct defined above in C makes no concession to being
object oriented. Ficl can model such C structures and make them appear as
useful objects in Forth. As is typical with object extensions to Forth, Ficl OOP
took about 200 lines of code to create. Perhaps Forth is the “better C” for
embedded systems.

Future Directions
Mainstream OO languages and C++ especially have fallen short of the goal of
permitting reuse of software components in a vendor and platform independent
way. Distributed object models such as COM and CORBA attempt to address
this situation. Both models claim to provide a vendor neutral, platform and
location independent protocol for software components to interoperate. Many
mainstream programming languages have COM and CORBA mappings. I’d like
to add this capability (at least a COM mapping) to Ficl.
It would be helpful to automate the generation of Ficl wrapper functions. There
exist programs [5] designed to do this task for scripting languages such as Perl

and Python. A port of such a program, especially if it could also generate Ficl
object wrapper code, would be a helpful adjunct to Ficl OOP.
Finally, I’d like to use Ficl to create some embedded control applications that
have been on the back burner for several years now.

References
1. Smalltalk-80: the Language – Adele Goldberg, Dave Robson – Addison

Wesley, 1989
2. Object Oriented Software Systems – David Robson – Byte, August 1981
3. Portable Inheritance and Polymorphism in C – Miro Samek – Embedded

Systems Programming, December 1997
4. Objects for Small Systems – John Hayes – Embedded Systems

Programming, March 1992
5. SWIG and Automated C/C++ Scripting Extensions – David Beazley – Dr.

Dobb’s Journal, February, 1998
6. Ficl 2.02 Release Notes – John Sadler – http://www.taygeta.com/ficl.html
7. Yet another Forth objects package – M. Anton Ertl –

http://www.complang.tuwien.ac.at/forth/objects/objects.html

Acknowledgements
Thanks to my wife Laura for enduring my mysterious late night coding frenzies,
to Skip Carter for hosting Ficl on the Taygeta web site, and to those who have
used Ficl and lived to tell the tale.

