home: hub: 9ficl

ref: 778af2c25383b3571a79951e4ada36b15d4c0ff8
dir: /doc/ficl.html/

View raw version
<html>

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Author" content="john sadler">
<meta name="Description"
content="the coolest embedded scripting language ever">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>ficl release notes</title>
</head>

<body>

<h1 align="center"><b>ficl 2.04 release notes</b></h1>

<table border="0" cellspacing="3" width="600">
    <tr>
        <td><b>Forth Inspired Command Language&nbsp;</b></td>
        <td rowspan="4"><img src="ficl_logo.jpg" width="64"
        height="64"></td>
    </tr>
    <tr>
        <td><b>Author: John Sadler (</b><a
        href="mailto:john_sadler@alum.mit.edu"><b>john_sadler@alum.mit.edu</b></a><b>)</b></td>
    </tr>
    <tr>
        <td><b>Created: 19 July 1997&nbsp;</b></td>
    </tr>
    <tr>
        <td><b>Revision 2.04: 20 May 2000</b></td>
    </tr>
</table>

<h2>Contents</h2>

<ul>
    <li><a href="#whatsnew">Release notes</a></li>
    <li><a href="#whatis">What is ficl?</a></li>
    <li><a href="#features">Ficl features</a></li>
    <li><a href="#porting">Porting</a></li>
    <li><a href="#api">Application Programming Interface</a></li>
    <li><a href="#manifest">Distribution source files</a></li>
    <li><a href="#locals">Local variables</a></li>
    <li><a href="#objects">Object Oriented Programming in ficl</a></li>
    <li><a href="#ootutorial">Ficl OO Tutorial</a></li>
    <li><a href="#cstring">Ficl String Classes</a></li>
    <li><a href="ficl.html#oopgloss">OOP glossary</a><ul>
            <li><a href="#glossinstance">Instance variable
                glossary</a></li>
            <li><a href="#glossclass">Class methods glossary</a></li>
            <li><a href="#objectgloss">Object base class methods
                glossary</a></li>
            <li><a href="#stockclasses">Supplied Classes</a></li>
        </ul>
    </li>
    <li><a href="#extras">Ficl extras</a></li>
    <li><a href="#ansinfo">ANS required information</a></li>
    <li><a href="#links">Forth and Ficl references, <font
        color="#000000"><b>download</b></font></a></li>
    <li><a href="#includesficl"><font color="#000000">Some
        software that includes ficl</font></a></li>
    <li><a href="#lawyerbait">Disclaimer &amp; License</a></li>
</ul>

<p>&nbsp;</p>

<table border="0" cellpadding="3" width="600" cols="1">
    <tr>
        <td><h2><a name="whatsnew"></a>What's new in version 2.04</h2>
        <h3>ficlwin</h3>
        <ul>
            <li>Catches exceptions thrown by VM in ficlThread (0
                @ for example) rather than passing them off to
                the OS. </li>
        </ul>
        <h3>ficl bugs vanquished</h3>
        <ul>
            <li>Fixed leading delimiter bugs in s&quot; .&quot;
                .( and ( (reported by Reuben Thomas)</li>
            <li>Makefile tabs restored (thanks to Michael Somos)</li>
            <li>ABORT&quot; now throws -2 per the DPANS (thanks
                to Daniel Sobral for sharp eyes again) </li>
            <li>ficlExec does not print the prompt string unless
                (source-id == 0)</li>
            <li>Various fixes contributed by the FreeBSD team.</li>
        </ul>
        <h3>ficl enhancements</h3>
        <ul>
            <li>Words.c: modified ficlCatch to use vmExecute and
                vmInnerLoop (request of Daniel Sobral) Added
                vmPop and vmPush functions (by request of Lars
                Krueger ) in vm.c These are shortcuts to the
                param stack. (Use LVALUEtoCELL to get things into
                CELL form) </li>
            <li>Added function vmGetStringEx with a flag to
                specify whether or not to skip lead delimiters</li>
            <li>Added non-std word: number?</li>
            <li>Added CORE EXT word AGAIN (by request of Reuben
                Thomas) </li>
            <li>Added double cell local (2local) support</li>
            <li>Augmented Johns Hopkins local syntax so that
                locals whose names begin with char 2 are treated
                as 2locals (OK - it's goofy, but handy for OOP)</li>
            <li>C-string class revised and enhanced - now
                dynamically sized</li>
            <li>C-hashstring class derived from c-string computes
                hashcode too.</li>
        </ul>
        </td>
    </tr>
    <tr>
        <td><h2>What's new in version 2.03</h2>
        <p>This is the first version of Ficl that includes
        contributed code. Thanks especially to Daniel Sobral,
        Michael Gauland for contributions and bug finding.&nbsp; </p>
        <p>New words </p>
        <ul>
            <li><a href="#clock"><tt>clock</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a href="#clockspersec"><tt>clocks/sec</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans8.htm#8.6.1.1230"><tt>dnegate</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (DOUBLE)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans10.htm#10.6.2.1905"><tt>ms</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (FACILITY EXT - replaces MSEC </tt><i><tt>ficlWin
                only</tt></i><tt>)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans9.htm#9.6.1.2275"><tt>throw</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (EXCEPTION)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans9.htm#9.6.1.0875"><tt>catch</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (EXCEPTION)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans14.htm#14.6.1.0707"><tt>allocate</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (MEMORY)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans14.htm#14.6.1.1605"><tt>free</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (MEMORY)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans14.htm#14.6.1.2145"><tt>resize</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (MEMORY)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans6.htm#6.2.2440"><tt>within</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (CORE EXT)</tt></li>
            <li><a href="#alloc"><tt>alloc</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (class method)</tt></li>
            <li><a href="#allocarray"><tt>alloc-array</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (class method)</tt></li>
            <li><a href="#oofree"><tt>free</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (class method)</tt></li>
        </ul>
        <p>Bugs Fixed </p>
        <ul>
            <li>Bug fix in isNumber(): used to treat chars
                between 'Z' and 'a' as valid in base 10...
                (harmless, but weird)</li>
            <li>ficlExec pushes the <i>ip</i> and <tt>interpret</tt>s
                at the right times so that nested calls to
                ficlExec behave the way you'd expect them to.</li>
            <li><tt>evaluate</tt> respects count parameter, and
                also passes exceptional return conditions back
                out to the calling instance of ficlExec.</li>
            <li>VM_QUIT now clears the locals dictionary in
                ficlExec.</li>
        </ul>
        <p>Ficlwin Enhancements </p>
        <ul>
            <li>File Menu: recent file list and Open now load
                files.</li>
            <li>Text ouput function is now faster through use of
                string caching. Cache flushes at the end of each
                line and each time ficlExec returns.</li>
            <li>Edit/paste now behaves more reasonably for text.
                File/open loads the specified file.</li>
            <li>Registry entries specify dictionary and stack
                sizes, default window placement, and whether or
                not to create a splitter for multiple VMs. See
                HKEY_CURRENT_USER/Software/CodeLab/ficlwin/Settings</li>
        </ul>
        <p>Ficl Enhancements </p>
        <ul>
            <li>This version includes changes to make it <b>64
                bit friendly</b>. This unfortunately meant that I
                had to tweak some core data types and structures.
                I've tried to make this transparent to 32 bit
                code, but a couple of things got renamed. INT64
                is now DPINT. UNS64 is now DPUNS. FICL_INT and
                FICL_UNS are synonyms for INT32 and UNS32 in 32
                bit versions, but a are obsolescent. Please use
                the new data types instead. Typed stack
                operations on INT32 and UNS32 have been renamed
                because they operate on CELL scalar types, which
                are 64 bits wide on 64 bit systems. Added
                BITS_PER_CELL, which has legal values of 32 or
                64. Default is 32.</li>
            <li>ficl.c: Added ficlExecXT() - executes an xt
                completely before returning, passing back any
                exception codes generated in the process. Normal
                exit code is VM_INNEREXIT.</li>
            <li>ficl.c: Added ficlExecC() to operate on counted
                strings as opposed to zero terminated ones.</li>
            <li>ficlExec pushes ip and executes interpret at the
                right times so that nested calls to ficlExec
                behave the way you'd expect them to.</li>
            <li>ficlSetStackSize() allows specification of stack
                size at run-time (affects subsequent invocations
                of ficlNewVM()).</li>
            <li>vm.c: vmThrow() checks for (pVM-&gt;pState !=
                NULL) before longjmping it. vmCreate nulls this
                pointer initially.&nbsp;</li>
            <li>EXCEPTION wordset contributed by Daniel Sobral of
                FreeBSD</li>
            <li>MEMORY-ALLOC wordset contributed by Daniel
                Sobral, too. Added class methods <tt>alloc</tt>
                and <tt>alloc-array</tt> in softwords/oo.fr to
                allocate objects from the heap.</li>
            <li>Control structure match check upgraded (thanks to
                Daniel Sobral for this suggestion). Control
                structure mismatches are now errors, not
                warnings, since the check accepts all syntactally
                legal constructs.</li>
            <li>Added vmInnerLoop() to vm.h. This function/macro
                factors the inner&nbsp; interpreter out of
                ficlExec so it can be used in other places.
                Function/macro behavior is conditioned on
                INLINE_INNER_LOOP in sysdep.h. Default: 1 unless
                _DEBUG is set. In part, this is because VC++ 5
                goes apoplectic when trying to compile it as a
                function. See&nbsp;</li>
            <li><br>
                comments in vm.c </li>
            <li>EVALUATE respects the count parameter, and also
                passes exceptional return conditions back out to
                the calling instance of ficlExec.</li>
            <li>VM_QUIT clears locals dictionary in ficlExec()</li>
            <li>Added Michael Gauland's ficlLongMul and
                ficlLongDiv and support routines to math64.c and
                .h. These routines are coded in C, and are
                compiled only if PORTABLE_LONGMULDIV == 1
                (default is 0).</li>
            <li>Added definition of ficlRealloc to sysdep.c
                (needed for memory allocation wordset). If your
                target OS supports realloc(), you'll probably
                want to redefine ficlRealloc in those terms. The
                default version does ficlFree followed by
                ficlMalloc.</li>
            <li>testmain.c: Changed gets() in testmain to fgets()
                to appease the security gods.</li>
            <li>testmain: <tt>msec</tt> renamed to <a
                href="#ficlms"><tt>ms</tt></a> in line with the
                ANS</li>
            <li>softcore.pl now removes comments &amp; spaces at
                the start and end of lines. As a result: sizeof
                (softWords) == 7663 bytes (used to be
                20000)&nbsp; and consumes 11384 bytes of
                dictionary when compiled</li>
            <li>Deleted license paste-o in readme.txt (oops).</li>
        </ul>
        </td>
    </tr>
    <tr>
        <td><h2>What's new in version 2.02</h2>
        <p>New words </p>
        <ul>
            <li><a
                href="http://www.taygeta.com/forth/dpans6.htm#6.2.1850"><tt>marker</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (CORE EXT)</tt></li>
            <li><a
                href="http://www.taygeta.com/forth/dpans15.htm#15.6.2.1580"><tt>forget</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (TOOLS EXT)</tt></li>
            <li><a href="#ficlforgetwid"><tt>forget-wid</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a href="#ficlwordlist"><tt>ficl-wordlist</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a href="#ficlvocabulary"><tt>ficl-vocabulary</tt></a><tt>&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a href="#ficlhide"><tt>hide</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a href="#ficlhidden"><tt>hidden</tt></a><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                (FICL)</tt></li>
            <li><a href="#jhlocal">Johns Hopkins local variable
                syntax</a> (as best I can determine)</li>
        </ul>
        <p>Bugs Fixed </p>
        <ul>
            <li><tt>forget</tt> now adjusts the dictionary
                pointer to remove the name of the word being
                forgotten (name chars come before the word header
                in ficl's dictionary)</li>
            <li><tt>:noname</tt> used to push the colon control
                marker and its execution token in the wrong order</li>
            <li><tt>source-id</tt> now behaves correctly when
                loading a file.</li>
            <li><tt>refill</tt> returns zero at EOF (Win32 load).
                Win32 <a href="#ficlload"><tt>load</tt></a>
                command continues to be misnamed. Really ought to
                be called <tt>included</tt>, but does not exactly
                conform to that spec either (because <tt>included</tt>
                expects a string signature on the stack, while
                Ficl's <a href="#ficlload"><tt>load</tt></a>
                expects a filename upon invocation). The
                &quot;real&quot; <tt>LOAD</tt> is a <tt>BLOCK</tt>
                word.</li>
        </ul>
        <p>Enhancements (IMHO) </p>
        <ul>
            <li>dictUnsmudge no longer links anonymous
                definitions into the dictionary</li>
            <li><tt>oop</tt> is no longer the default compile
                wordlist at startup, nor is it in the search
                order. Execute <b><tt>also oop definitions</tt></b>
                to use Ficl OOP.</li>
            <li>Revised oo.fr extensively to make more use of
                early binding</li>
            <li>Added <tt>meta</tt> - a constant that pushes the
                address of metaclass. See oo.fr for examples of
                use.</li>
            <li>Added classes: <tt>c-ptr&nbsp; c-bytePtr&nbsp;
                c-2bytePtr&nbsp; c-cellPtr </tt>These classes
                model pointers to non-object data, but each knows
                the size of its referent.</li>
        </ul>
        </td>
    </tr>
    <tr>
        <td><h2>What's new in version 2.01</h2>
        <ul>
            <li>Bug fix: <tt>(local)</tt> used to leave a value
                on the stack between the first and last locals
                declared. This value is now stored in a static.</li>
            <li>Added new local syntax with parameter
                re-ordering. <a href="#newlocal">See description
                below</a>. (No longer compiled in version 2.02,
                in favor of the Johns Hopkins syntax)</li>
        </ul>
        </td>
    </tr>
    <tr>
        <td><h2>What's new in version 2.0</h2>
        <ul>
            <li>New ANS Forth words: <tt>TOOLS</tt> and part of <tt>TOOLS
                EXT, SEARCH</tt> and <tt>SEARCH EXT, LOCALS</tt>
                and <tt>LOCALS EXT</tt> word sets, additional
                words from <tt>CORE EXT, DOUBLE</tt>, and <tt>STRING</tt>.
                (See the function ficlCompileCore in words.c for
                an alphabetical list by word set).</li>
            <li>Simple <tt>USER</tt> variable support - a user
                variable is a virtual machine instance variable.
                User variables behave as <tt>VARIABLE</tt>s in
                all other respects.</li>
            <li>Object oriented syntax extensions (see below)</li>
            <li>Optional stack underflow and overflow checking in
                many CORE words (enabled when FICL_ROBUST &gt;=
                2)</li>
            <li>Various bug fixes</li>
        </ul>
        </td>
    </tr>
</table>

<hr>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h1><a name="whatis"></a>What is ficl?</h1>
        <p><font size="4">Ficl (Forth inspired command language)
        is an ANS Forth interpreter written in C. Unlike
        traditional Forths, this interpreter is designed to be
        embedded into other systems as a
        command/macro/development prototype language. Ficl
        provides object extensions that can be used to wrap
        methods and structures of the host system without
        altering them. See below for examples of </font><a
        href="#includesficl"><font size="4">software that
        includes ficl</font></a><font size="4">.</font></p>
        </td>
    </tr>
    <tr>
        <td>Where Forths usually view themselves as the center of
        the system and expect the rest of the system to be coded
        in Forth, Ficl acts as a component of the system. It is
        easy to export code written in C or ASM to Ficl in the
        style of TCL, or to invoke Ficl code from a compiled
        module. This allows you to do incremental development in
        a way that combines the best features of threaded
        languages (rapid development, quick code/test/debug
        cycle, reasonably fast) with the best features of C
        (everyone knows it, easier to support large blocks of
        code, efficient, type checking). In addition, Ficl
        provides a simple object model that can act as an object
        oriented adapter for code written in C (or asm, Forth,
        C++...).&nbsp;</td>
    </tr>
    <tr>
        <td><b>Ficl Design goals</b> <ul>
            <li>Target 32 bit processors (<i>version 2.03 targets
                64 bit processors too</i>)</li>
            <li>Scripting, prototyping, and extension language
                for systems written also in C</li>
            <li>Supportable - code is as transparent as I can
                make it</li>
            <li>Interface to functions written in C</li>
            <li>Conform to the Forth DPANS 94</li>
            <li>Minimize porting effort - require an ANSI C
                runtime environment and minimal glue code</li>
            <li>Provide object oriented extensions</li>
        </ul>
        </td>
    </tr>
</table>

<p>&nbsp; </p>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="features"></a>Ficl features</h2>
        <ul>
            <li>Code is written in ANSI C for portability.&nbsp;</li>
            <li>Standard: Implements the ANS Forth CORE word set,
                part of the CORE EXT word set, SEARCH and SEARCH
                EXT, TOOLS and part of TOOLS EXT, LOCAL and LOCAL
                EXT, EXCEPTION, MEMORY,&nbsp; and various extras.</li>
            <li>Extensible: you can export code written in Forth,
                C, or asm in a straightforward way. Ficl provides
                open facilities for extending the language in an
                application specific way. You can even add new
                control structures (not surprising if you're
                familiar with Forth)</li>
            <li>Ficl and C can interact in two ways: Ficl can
                wrap C code, and C functions can invoke ficl
                code.</li>
            <li>Ficl code is thread safe and re-entrant:&nbsp;
                All Ficl VMs share one system dictionary; each
                Ficl virtual machine has an otherwise complete
                state, and each can be bound to a separate I/O
                channel (or none at all). An optional function
                called ficlLockDictionary() can control exclusive
                dictionary access. This function is stubbed out
                by default (See FICL_MULTITHREAD in sysdep.h). As
                long as there is only one &quot;session&quot;
                that can compile words into the dictionary, you
                do not need exclusive dictionary access for
                multithreading. <font color="#000099"><b>Note</b>:
                while the code is re-entrant, there are still
                restrictions on how you can use it safely in a
                multithreaded system. Specifically, the VM itself
                maintains state, so you generally need a VM per
                thread in a multithreaded system. If interrupt
                service routines make calls into Ficl code that
                alters VM state, then these generally need their
                own VM as well. Alternatively, you could provide
                a mutual exclusion mechanism to serialize access
                to a VM from multiple threads.</font></li>
            <li>Simple incorporation into existing systems: the
                sample implementation requires three Ficl
                function calls (see the example program in
                testmain.c).</li>
            <li>ROM able: Ficl is designed to work in RAM based
                and ROM code / RAM data environments. It does
                require somewhat more memory than a pure ROM
                implementation because it builds its system
                dictionary in RAM at startup time.</li>
            <li>Written an ANSI C to be as simple as I can make
                it to understand, support, debug, and port.
                Compiles without complaint at /Az /W4 (require
                ANSI C, max. warnings) under Microsoft VC++</li>
            <li>Does full 32 bit math (but you need to implement
                two mixed precision math primitives (see
                sysdep.c))</li>
            <li>Type 1 indirect threaded interpreter</li>
        </ul>
        </td>
    </tr>
</table>

<hr>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="porting"></a>Porting ficl</h2>
        <p>To install ficl on your target system, you need an
        ANSI C compiler and its runtime library. Inspect the
        system dependent macros and functions in <tt>sysdep.h</tt>
        and <tt>sysdep.c</tt> and edit them to suit your system.
        For example, <tt>INT16</tt> is a <tt>short</tt> on some
        compilers and an <tt>int</tt> on others. Check the
        default <tt>CELL</tt> alignment controlled by <tt>FICL_ALIGN</tt>.
        If necessary, add new definitions of <tt>ficlMalloc,
        ficlFree, ficlLockDictionary</tt>, and <tt>ficlTextOut</tt>
        to work with your operating system. Finally, use <tt>testmain.c</tt>
        as a guide to installing the ficl system and one or more
        virtual machines into your code. You do not need to
        include <tt>testmain.c</tt> in your build.&nbsp; </p>
        <p>Feel free to stub out the double precision math
        functions (which are presently implemented as inline
        assembly because it's so easy on many 32 bit processors)
        with kludge code that only goes to 32 bit precision. In
        most applications, you won't notice the difference. If
        you're doing a lot of number crunching, consider
        implementing them correctly.&nbsp; </p>
        <h3>Build controls</h3>
        <p>The file sysdep.h contains default values for build
        controls. Most of these are written such that if you
        define them on the compiler command line, the defaults
        are overridden. I suggest you take the defaults on
        everything below the &quot;build controls&quot; section
        until you're confident of your port. Beware of declaring
        too small a dictionary, for example. You need about 3200
        cells for a full system, about 2000 if you strip out most
        of the &quot;soft&quot; words.&nbsp; </p>
        <h3>To-Do List (target system dependent words)</h3>
        <ul>
            <li>Unimplemented system dependent <tt>CORE</tt>
                word: <tt>KEY</tt>&nbsp;</li>
            <li>Kludged <tt>CORE</tt> word: <tt>ACCEPT</tt></li>
        </ul>
        </td>
    </tr>
</table>

<p>&nbsp; </p>

<table border="0" width="600" cols="1">
    <tr>
        <td><h2><a name="api"></a>Application Programming
        Interface</h2>
        <p><i>See the comments in ficl.c and ficl.h for
        additional information, and the example in file
        testmain.c.</i> &nbsp; </p>
        <dl>
            <dt><b>void ficlInitSystem(int nDictCells)</b></dt>
            <dd>Initializes Ficl's shared system data structures,
                and creates the dictionary allocating the
                specified number of CELLs from the heap (by a
                call to ficlMalloc)</dd>
            <dt><b>void ficlTermSystem(void)</b></dt>
            <dd>Reclaims memory allocated for the ficl system
                including all dictionaries and all virtual
                machines created by vmCreate. Any uses of the
                memory allocation words (allocate and resize) are
                your problem.</dd>
            <dt><b>int ficlBuild(char *name, FICL_CODE code, char
                flags)</b></dt>
            <dd>Create a primitive word in ficl's main dictionary
                with the given name, code pointer, and properties
                (immediate, compile only, etc) as described by
                the flags (see ficl.h for flag descriptions of
                the form FW_XXXX)</dd>
            <dt><b>int ficlExec(FICL_VM *pVM, char *text)</b></dt>
            <dd>Feed the specified C string ('\0' terminated) to
                the given virtual machine for evaluation. Returns
                various exception codes (VM_XXXX in ficl.h) to
                indicate the reason for returning. Normal exit
                condition is VM_OUTOFTEXT, indicating that the VM
                consumed the string successfully and is back for
                more. ficlExec calls can be nested, and the
                function itself is re-entrant, but note that a VM
                is static, so you have to take reasonable
                precautions (for example, use one VM per thread
                in a multithreaded system if you want multiple
                threads to be able to execute commands).</dd>
            <dt><b>int ficlExecC(FICL_VM *pVM, char *text, int
                nChars)</b></dt>
            <dd>Same as ficlExec, but takes a count indicating
                the length of the supplied string. Setting nChars
                to -1 is equivalent to ficlExec (expects '\0'
                termination).</dd>
            <dt><b>int ficlExecXT(FICL_VM *pVM, FICL_WORD *pFW)</b></dt>
            <dd>Same as ficlExec, but takes a pointer to a
                FICL_WORD instead of a string. Executes the word
                and returns after it has finished. If executing
                the word results in an exception, this function
                will re-throw the same code if it is nested under
                another ficlExec family function, or return the
                exception code directly if not. This function is
                useful if you need to execute the same word
                repeatedly - you save the dictionary search and
                outer interpreter overhead.</dd>
            <dt><b>FICL_VM *ficlNewVM(void)</b></dt>
            <dd>Create, initialize, and return a VM from the heap
                using ficlMalloc. Links the VM into the system VM
                list for later reclamation by ficlTermSystem.</dd>
            <dt><b>FICL_WORD *ficlLookup(char *name)</b></dt>
            <dd>Returns the address (also known as an XT in this
                case) of the specified word in the main
                dictionary. If not found, returns NULL. The
                address can be used in a call to ficlExecXT.</dd>
            <dt><b>FICL_DICT *ficlGetDict(void)</b></dt>
            <dd>Returns a pointer to the main system dictionary,
                or NULL if the system is uninitialized.</dd>
            <dt><b>FICL_DICT *ficlGetEnv(void)</b></dt>
            <dd>Returns a pointer to the environment dictionary.
                This dictionary stores information that describes
                this implementation as required by the Standard.</dd>
            <dt><b>void ficlSetEnv(char *name, UNS32 value)</b></dt>
            <dd>Enters a new constant into the environment
                dictionary, with the specified name and value.</dd>
            <dt><b>void ficlSetEnvD(char *name, UNS32 hi, UNS32
                lo)</b></dt>
            <dd>Enters a new double-cell constant into the
                environment dictionary with the specified name
                and value.</dd>
            <dt><b>FICL_DICT *ficlGetLoc(void)</b></dt>
            <dd>Returns a pointer to the locals dictionary. This
                function is defined only if FICL_WANT_LOCALS is
                #defined as non-zero (see sysdep.h). The locals
                dictionary is the symbol table for <a
                href="#locals">local variables</a>.</dd>
            <dt><b>void ficlCompileCore(FICL_DICT *dp)</b></dt>
            <dd>Defined in words.c, this function builds ficl's
                primitives.&nbsp;</dd>
            <dt><b>void ficlCompileSoftCore(FICL_VM *pVM)</b></dt>
            <dd>Defined in softcore.c, this function builds ANS
                required words and ficl extras by evaluating a
                text string (think of it as a memory mapped file
                ;-) ). The string itself is built from files in
                the softwords directory by PERL script
                softcore.pl.&nbsp;</dd>
        </dl>
        </td>
    </tr>
</table>

<hr>

<table border="0" cellspacing="5" width="600">
    <tr>
        <td colspan="2"><h2>&nbsp;<a name="manifest"></a>Ficl
        Source Files</h2>
        </td>
    </tr>
    <tr>
        <td><b>ficl.h</b></td>
        <td>Declares most public functions and all data
        structures. Includes sysdep.h and math.h</td>
    </tr>
    <tr>
        <td><b>sysdep.h</b></td>
        <td>Declares system dependent functions and contains
        build control macros. Edit this file to port to another
        system.</td>
    </tr>
    <tr>
        <td><b>math.h</b></td>
        <td>Declares functions for 64 bit math</td>
    </tr>
    <tr>
        <td><b>words.c</b></td>
        <td>Exports ficlCompileCore(), the run-time dictionary
        builder, and contains all primitive words as static
        functions.</td>
    </tr>
    <tr>
        <td><b>vm.c</b></td>
        <td>Virtual Machine methods</td>
    </tr>
    <tr>
        <td><b>stack.c</b></td>
        <td>Stack methods</td>
    </tr>
    <tr>
        <td><b>ficl.c</b></td>
        <td>System initialization, termination, and ficlExec</td>
    </tr>
    <tr>
        <td><b>dict.c</b></td>
        <td>Dictionary</td>
    </tr>
    <tr>
        <td><b>math64.c</b></td>
        <td>Implementation of 64 bit math words (except the two
        unsigned primitives declared in sysdep.h and implemented
        in sysdep.c)</td>
    </tr>
    <tr>
        <td><b>softcore.c</b></td>
        <td>Contains all of the &quot;soft&quot; words - those
        written in Forth and compiled by Ficl at startup time.
        Sources for these words are in the softwords directory.
        The files softwords/softcore.bat and
        softwords/softcore.pl generate softcore.c from the .fr
        sources.</td>
    </tr>
    <tr>
        <td><b>sysdep.c</b></td>
        <td>Implementation of system dependent functions declared
        in sysdep.h</td>
    </tr>
    <tr>
        <td><b>softwords/</b></td>
        <td>Directory contains sources and translation scripts
        for the words defined in softcore.c. Softcore.c depends
        on most of the files in this directory. See softcore.bat
        for the actual list of files that contribute to
        softcore.c. This is where you'll find source code for the
        object oriented extensions.</td>
    </tr>
</table>

<hr>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="locals"></a>Local Variables</h2>
        <p>Locally scoped variables came late to Forth. Purists
        seem to feel that experienced Forth programmers can write
        supportable code using only anonymous stack variables and
        good factoring, but they complain that novices use global
        variables too much. Local variables cost little in terms
        of code size and execution speed, and are very convenient
        for OO programming, where stack effects are more complex.</p>
        <p>Ficl includes support for <tt>LOCALS</tt> and <tt>LOCALS
        EXT</tt> words (all three of them!). I've implemented
        both of the local variable syntaxes suggested in DPANS
        Appendix A.13. Examples: (By the way, Ficl implements <tt>-ROT</tt>
        as <tt>: -rot&nbsp;&nbsp; 2 -roll ;</tt> )&nbsp; </p>
        <ul>
            <li><b><tt>\ Using LOCALS| from LOCALS EXT</tt></b> <br>
                <b><tt>: -rot&nbsp;&nbsp; ( a b c -- c a b )</tt></b>
                <br>
                <b><tt>&nbsp;&nbsp;&nbsp; locals| c b a |</tt></b>
                <br>
                <b><tt>&nbsp;&nbsp;&nbsp; c a b&nbsp;</tt></b> <br>
                <b><tt>;</tt></b> <br>
                <b><tt>\ Using LOCAL END-LOCAL</tt></b> <br>
                <b><tt>: -rot&nbsp;&nbsp; ( a b c -- c a b )</tt></b>
                <br>
                <b><tt>&nbsp;&nbsp;&nbsp; local c</tt></b> <br>
                <b><tt>&nbsp;&nbsp;&nbsp; local b</tt></b> <br>
                <b><tt>&nbsp;&nbsp;&nbsp; local a</tt></b> <br>
                <b><tt>&nbsp;&nbsp;&nbsp; end-locals</tt></b> <br>
                <b><tt>&nbsp;&nbsp;&nbsp; c a b</tt></b> <br>
                <b><tt>;</tt></b></li>
        </ul>
        <p>Local variable support is optional because it adds a
        small amount of overhead to the outer interpreter. You
        can disable it by setting FICL_WANT_LOCALS to 0 in
        sysdep.h. Beware: much of the OOP code described below
        uses local variables, so if you disable locals, you're
        going to lose other capabilities too. Local variables can
        make Forth code quite a bit easier to read, so I'd
        encourage you to experiment with them.&nbsp; <br>
        The default maximum number of local variables is 16. It's
        controlled by FICL_MAX_LOCALS in sysdep.h.&nbsp; </p>
        <p><a name="jhlocal"></a>Ficl 2.02 includes by default an
        implementation of the Johns Hopkins local syntax (as best
        I can determine it from examples on the web). This syntax
        lets you declare local variables that look very much like
        a stack comment. Variables in the declaration appear in
        the &quot;correct&quot; order for a stack comment.
        Everything after the -- is treated as a comment. In
        addition, you can insert a | before the -- to declare one
        or more zero-initialized locals. Example: </p>
        <blockquote>
            <p><b><tt>:tuck0&nbsp;&nbsp; { a b c | d -- 0 a b c }</tt></b>
            <br>
            <b><tt>&nbsp;&nbsp;&nbsp; d a b c ;</tt></b></p>
        </blockquote>
        <p>The | and -- delimiters can appear at most once, and
        must appear in the order shown in the example to work
        correctly. The local declaration ends at the first
        occurrence of }. The declaration must all be on one line
        as presently implemented. </p>
        <p>In ficl 2.04 and later, this facilty can also declare
        double cell locals (this is handy for <a
        href="#ootutorial">OOP</a>, where objects take two cells
        to represent on the stack). Double cell locals (AKA
        2locals) have names that start with 2. See
        ficl/softwords/string.fr for examples.</p>
        <p><a name="newlocal"></a>Ficl 2.01 added yet another
        local syntax that models a stack comment. This one is not
        compiled in the release, but you can add it by editing
        softwords/softcore.bat to include the file ficllocal.fr.
        In this case, parameters are re-ordered so that the
        rightmost initialized param comes from the top of the
        stack. The syntax is:&nbsp; </p>
        <blockquote>
            <p><b><tt>{{ &lt;initialized params&gt; --
            &lt;cleared params&gt; }}</tt></b></p>
        </blockquote>
        <p>You can omit either the initialized or the cleared
        parameters. Parameters after the double dash are set to
        zero initially. Those to the left are initialized from
        the stack at execution time. Examples (lame ones,
        admittedly):&nbsp; </p>
        <p><!--webbot bot="HTMLMarkup" startspan --><pre><!--webbot
        bot="HTMLMarkup" endspan --><b><tt>: -rot&nbsp;&nbsp; ( a
        b c -- c a b )</tt></b><br>
        <b><tt>&nbsp;&nbsp;&nbsp; {{ a b c }}</tt></b> <br>
        <b><tt>&nbsp;&nbsp;&nbsp; c a b&nbsp;</tt></b> <br>
        <b><tt>;</tt></b> <br>
        <b><tt>: tuck0&nbsp; ( a b c -- 0 a b c )</tt></b> <br>
        <b><tt>&nbsp;&nbsp;&nbsp; {{ a b c -- d }}</tt></b> <br>
        <b><tt>&nbsp;&nbsp;&nbsp; d a b c&nbsp;</tt></b> <br>
        <b><tt>;&nbsp;<!--webbot bot="HTMLMarkup" startspan --></pre><!--webbot
        bot="HTMLMarkup" endspan --></tt></b></p>
        <h3>Search Order</h3>
        <p>Ficl implements many of the search order words in
        terms of two primitives called <a href="#tosearch"><tt>&gt;SEARCH</tt></a>
        and <a href="#searchfrom"><tt>SEARCH&gt;</tt></a>. As
        their names suggest (assuming you're familiar with
        Forth), they push and pop the search order stack. See the
        list of <a href="#extras">Ficl extras</a> for
        details.&nbsp; <br>
        The standard does not appear to specify any conditions
        under which the search order is reset to a sane state.
        Ficl resets the search order to its default state
        whenever <tt>ABORT</tt> happens. This includes stack
        underflows and overflows. <tt>QUIT</tt> does not affect
        the search order. The minimum search order (set by <tt>ONLY</tt>)
        is equivalent to&nbsp; <br>
        <b><tt>FORTH-WORDLIST 1 SET-ORDER</tt></b> <br>
        There is a default maximum of 16 wordlists in the search
        order. This can be changed by redefining
        FICL_DEFAULT_VOCS (declared in sysdep.h).&nbsp; </p>
        <h3>Soft Words</h3>
        <p>Many words from all the supported wordsets are written
        in Forth, and stored as a big string that Ficl compiles
        when it starts. The sources for all of these words are in
        directory ficl/softwords. There is a .bat file
        (softcore.bat) and a PERL 5 script (softcore.pl) that
        convert Forth files into the file softcore.c, so
        softcore.c is really dependent on the Forth sources. This
        is not reflected in the Visual C++ project database. For
        the time being, it's a manual step. You can edit
        softcore.bat to change the list of files that contribute
        to softcore.c.&nbsp;</p>
        </td>
    </tr>
</table>

<hr>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="objects"></a>Object Oriented Programming
        in ficl</h2>
        <p>Ficl is not the first Forth to include Object Oriented
        extensions. Ficl's OO syntax owes a debt to the work of
        John Hayes and Dick Pountain, among others. OO Ficl is
        different from other OO Forths in a few ways, though
        (some things never change). First, unlike several
        implementations, the syntax is documented (<a
        href="#ootutorial">below</a>) beyond the source code. In
        Ficl's spirit of working with C code, the OO syntax
        provides means to adapt existing data structures. I've
        tried to make Ficl's OO model simple and safe by unifying
        classes and objects, providing late binding by default,
        and separating namespaces so that methods and regular
        Forth words are not easily confused.&nbsp; </p>
        <h3>Design goals of Ficl OO syntax</h3>
        <p>Ficl's object extensions provide the traditional OO
        benefits of associating data with the code that
        manipulates it, and reuse through single inheritance.
        Ficl also has some unusual capabilities that support
        interoperation with systems written in C.&nbsp; </p>
        <ul>
            <li>Ficl objects are normally late bound for safety
                (late binding guarantees that the appropriate
                method will always be invoked for a particular
                object). Early binding is also available,
                provided you know the object's class at
                compile-time.</li>
            <li>Ficl OOP supports single inheritance,
                aggregation, and arrays of objects.</li>
            <li>Classes have independent name spaces for their
                methods: methods are only visible in the context
                of a class or object. Methods can be overridden
                or added in subclasses; there is no fixed limit
                on the number of methods of a class or subclass.</li>
            <li>Ficl OOP syntax is regular and unified over
                classes and objects. In ficl, all classes are
                objects. Class methods include the ability to
                subclass and instantiate.</li>
            <li>Ficl can adapt legacy data structures with object
                wrappers. You can model a structure in a Ficl
                class, and create an instance that refers to an
                address in memory that holds an instance of the
                structure. The <i>ref object</i> can then
                manipulate the structure directly. This lets you
                wrap data structures written and instantiated in
                C.</li>
        </ul>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h3>Ficl Object Model</h3>
        <p>All classes in Ficl are derived from the common base
        class <a href="#objectgloss"><tt>OBJECT</tt></a>. All
        classes are instances of <a href="#glossclass"><tt>METACLASS</tt></a>.
        This means that classes are objects, too. <tt>METACLASS</tt>
        implements the methods for messages sent to classes.
        Class methods create instances and subclasses, and give
        information about the class. Classes have exactly three
        elements: </p>
        <ul>
            <li>The address ( <tt>.CLASS</tt> ) of a parent
                class, or zero if it's a base class (only <tt>OBJECT</tt>
                and <tt>METACLASS</tt> have this property)</li>
            <li>The size ( <tt>.SIZE</tt> ) in address units of
                an instance of the class</li>
            <li>A wordlist ID ( <tt>.WID</tt> ) for the methods
                of the class</li>
        </ul>
        <p>In the figure below, <tt>METACLASS</tt> and <tt>OBJECT</tt>
        are system-supplied classes. The others are contrived to
        illustrate the relationships among derived classes,
        instances, and the two system base classes. The dashed
        line with an arrow at the end indicates that the
        object/class at the arrow end is an instance of the class
        at the other end. The vertical line with a triangle
        denotes inheritance.&nbsp; </p>
        <p>Note for the curious: <tt>METACLASS</tt> behaves like
        a class - it responds to class messages and has the same
        properties as any other class. If you want to twist your
        brain in knots, you can think of <tt>METACLASS</tt> as an
        instance of itself.&nbsp; <br>
        &nbsp;</p>
        </td>
    </tr>
</table>

<p><img src="ficl_oop.jpg" vspace="10" width="652" height="442"> </p>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="ootutorial"></a>Ficl OO Syntax Tutorial</h2>
        <h3>Introduction</h3>
        <p>Ficl objects associate a class with an instance
        (really the storage for one set of instance variables).
        This is done explicitly, in that any Ficl object is
        represented by the cell pair:&nbsp; </p>
        <blockquote>
            <p><b><tt>( instance-addr class-addr )</tt></b></p>
        </blockquote>
        <p>on the stack. Whenever a named Ficl object executes,
        it leaves this &quot;signature&quot;. All methods expect
        a class and instance on the stack when they execute, too.
        In many other OO languages, including C++, instances
        contain information about their classes (a vtable
        pointer, for example). By making this pairing explicit
        rather than implicit, Ficl can be OO about chunks of data
        that don't realize that they are objects, without
        sacrificing any robustness for native objects.
        Whenever&nbsp; you create an object in Ficl, you specify
        its class. After that, the object always pushes its class
        and the address of its payload (instance variable space)
        when invoked by name.&nbsp; </p>
        <p>Classes are special kinds of objects that store the
        methods of their instances, the size of an instance's
        payload, and a parent class pointer. Classes themselves
        are instances of a special base class called <tt>METACLASS</tt>,
        and all classes inherit from class <tt>OBJECT</tt>. This
        is confusing at first, but it means that Ficl has a very
        simple syntax for constructing and using objects. Class
        methods include subclassing (<tt>SUB</tt>), creating
        initialized and uninitialized instances (<tt>NEW</tt> and
        <tt>INSTANCE</tt>), and creating reference instances (<tt>REF</tt>).
        Classes also have methods for disassembling their methods
        (<tt>SEE</tt>), identifying themselves (<tt>ID</tt>), and
        listing their pedigree (<tt>PEDIGREE</tt>). All objects
        inherit methods for initializing instances and arrays of
        instances, for performing array operations, and for
        getting information about themselves.&nbsp; </p>
        <h3>Methods and messages</h3>
        <p>Methods are the chunks of code that objects execute in
        response to messages. A message is a request to an object
        for a behavior that the object supports. When it receives
        a message, the target object looks up a method that
        performs the behavior for its class, and executes it. Any
        specific message will be bound to different methods in
        different objects, according to class. This separation of
        messages and methods allows objects to behave
        polymorphically. (In Ficl, methods are words defined in
        the context of a class, and messages are the names of
        those words.) Ficl classes associate messages with
        methods for their instances (a fancy way of saying that
        each class owns a wordlist). Ficl provides a late-binding
        operator <b><tt>--&gt;</tt></b> that sends messages to
        objects at run-time, and an early-binding operator <b><tt>=&gt;</tt></b>
        that compiles a specific class's method. These operators
        are the only supported way to invoke methods. Regular
        Forth words are not visible to the method-binding
        operators,&nbsp; so there's no chance of confusing a
        message with a regular word of the same name.&nbsp;</p>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h3>Tutorial (finally!)</h3>
        <p>Since this is a tutorial, I'm assuming you're
        following along by pasting the examples into ficlWin, the
        Win32 version of Ficl (or some other build that includes
        the OO part of softcore.c). I also assume that you're
        familiar with Forth. If not, please see one of the <a
        href="#links">references</a>, below. Ficl's OOP words are
        in vocabulary OOP. To put OOP in the search order and
        make it the compilation wordlist from the default search
        order (as set by <tt>ONLY</tt>), type:&nbsp; </p>
        <blockquote>
            <p><b><tt>ONLY&nbsp;&nbsp; ( reset to default search
            order )</tt></b> <br>
            <b><tt>ALSO OOP DEFINITIONS</tt></b></p>
        </blockquote>
        <p>To start, we'll work with the two base classes <tt>OBJECT</tt>
        and <tt>METACLASS</tt>. Try this:&nbsp; </p>
        <blockquote>
            <p><b><tt>metaclass --&gt; methods</tt></b></p>
        </blockquote>
        <p>The line above contains three words. The first is the
        name of a class, so it pushes its signature on the stack.
        Since all classes are instances of <tt>METACLASS</tt>, <tt>METACLASS</tt>
        behaves as if it is an instance of itself (this is the
        only class with this property). It pushes the same
        address twice: once for the class and once for the
        payload, since they are the same. The next word finds a
        method in the context of a class and executes it. In this
        case, the name of the method is <tt>methods</tt>. Its job
        is to list all the methods that a class knows. What you
        get when you execute this line is a list of all the class
        methods Ficl provides.&nbsp; </p>
        <blockquote>
            <p><b><tt>object --&gt; sub c-foo</tt></b></p>
        </blockquote>
        <p>Causes base-class <tt>OBJECT</tt> to derive from
        itself a new class called c-foo. Now we'll add some
        instance variables and methods to the new class...&nbsp; </p>
        <blockquote>
            <p><b><tt>cell: m_cell1</tt></b> <br>
            <b><tt>4 chars: m_chars</tt></b> <br>
            <b><tt>: init&nbsp;&nbsp; ( inst class -- )</tt></b> <br>
            <b><tt>&nbsp;&nbsp;&nbsp; locals| class inst |</tt></b>
            <br>
            <b><tt>&nbsp;&nbsp;&nbsp; 0 inst class --&gt; m_cell1
            !</tt></b> <br>
            <b><tt>&nbsp;&nbsp;&nbsp; inst class --&gt; m_chars 4
            0 fill</tt></b> <br>
            <b><tt>&nbsp;&nbsp;&nbsp; .&quot; initializing an
            instance of c_foo at &quot; inst x. cr</tt></b> <br>
            <b><tt>;</tt></b> <br>
            <b><tt>end-class</tt></b></p>
        </blockquote>
        <p>The first two lines add named instance variables to
        the class, and create a method for each. <i>Untyped</i>
        instance variable methods (like those created by <tt>cell:
        cells: char:</tt> and <tt>chars:</tt>) just push the
        address of the corresponding instance variable when
        invoked on an instance of the class. It's up to you to
        remember the size of the instance variable and manipulate
        it with the usual Forth words for fetching and storing
        (we'll see below how to aggregate objects, which do know
        their size). We've also defined a method called <tt>init</tt>
        that clears the instance variables. Notice that the
        method expects the addresses of the class and instance
        when it's called. It stashes those in local variables to
        avoid stack tricks, and puts them onto the stack whenever
        it calls a method. In this case, we're storing zero to
        the two member variables.&nbsp; </p>
        <p>The <tt>init</tt> method is special for Ficl objects:
        whenever you create an initialized instance using <b><tt>new</tt></b>
        or <b><tt>new-array</tt></b>, Ficl calls the class's <tt>init</tt>
        method for you on that instance. The default <tt>init</tt>
        method supplied by class <tt>object</tt> clears the
        instance, so we didn't really need to override it in this
        case (see the source code in ficl/softwords/oo.fr).&nbsp;
        <br>
        Now make an instance of the new class:&nbsp; </p>
        <blockquote>
            <p><b><tt>c-foo --&gt; new foo-instance</tt></b></p>
        </blockquote>
        <p>And try a few things...&nbsp; </p>
        <blockquote>
            <p><b><tt>foo-instance --&gt; methods</tt></b> <br>
            <b><tt>foo-instance --&gt; pedigree</tt></b></p>
        </blockquote>
        <p>Or you could type this with the same effect:&nbsp; </p>
        <blockquote>
            <p><b><tt>foo-instance 2dup --&gt; methods --&gt;
            pedigree</tt></b></p>
        </blockquote>
        <p>Notice that we've overridden the init method supplied
        by object, and added two more methods for the member
        variables. If you type WORDS, you'll see that these
        methods are not visible outside the context of the class
        that contains them. The method finder --&gt; uses the
        class to look up methods. You can use this word in a
        definition, as we did in <tt>init</tt>, and it performs
        late binding, meaning that the mapping from message
        (method name) to method (the code) is deferred until
        run-time. To see this, you can decompile the init method
        like this:&nbsp; </p>
        <blockquote>
            <p><b><tt>c-foo --&gt; see init</tt></b> <br>
            or&nbsp; <br>
            <b><tt>foo-instance --&gt; class --&gt; see init</tt></b></p>
        </blockquote>
        <p>Ficl also provides early binding, but you have to ask
        for it. Ficl's early binding operator pops a class off
        the stack and compiles the method you've named, so that
        that method executes regardless of the class of object
        it's used on. This can be dangerous, since it defeats the
        data-to-code matching mechanism object oriented languages
        were created to provide, but it does increase run-time
        speed by binding the method at compile time. In many
        cases, such as the init method, you can be reasonably
        certain of the class of thing you're working on. This is
        also true when invoking class methods, since all classes
        are instances of <tt>metaclass</tt>. Here's an example
        from the definition of <tt>metaclass</tt> in oo.fr (don't
        paste this into ficlWin - it's already there):&nbsp; </p>
        <blockquote>
            <p><b><tt>: new&nbsp;&nbsp; \ ( class metaclass
            &quot;name&quot; -- )</tt></b> <br>
            <b><tt>&nbsp;&nbsp;&nbsp; metaclass =&gt; instance
            --&gt; init ;</tt></b></p>
        </blockquote>
        <p>Try this... </p>
        <blockquote>
            <p><b><tt>metaclass --&gt; see new</tt></b></p>
        </blockquote>
        <p>Decompiling the method with <tt>SEE</tt> shows the
        difference between the two strategies. The early bound
        method is compiled inline, while the late-binding
        operator compiles the method name and code to find and
        execute it in the context of whatever class is supplied
        on the stack at&nbsp; run-time.&nbsp; <br>
        Notice that the early-binding operator requires a class
        at compile time. For this reason, classes are <tt>IMMEDIATE</tt>,
        meaning that they push their signature at compile time or
        run time. I'd recommend that you avoid early binding
        until you're very comfortable with Forth, object-oriented
        programming,&nbsp; and Ficl's OOP syntax.&nbsp; </p>
        <p>As advertised earlier, Ficl provides ways to objectify
        existing data structures without changing them. Instead,
        you can create a Ficl class that models the structure,
        and instantiate a <b>ref </b>from this class, supplying
        the address of the structure. After that, the <i>ref
        instance</i> behaves as a Ficl object, but its instance
        variables take on the values in the existing structure.
        Example (from ficlclass.fr):&nbsp; <br>
        &nbsp; </p>
        <blockquote>
            <p><b><tt>object subclass c-wordlist \ OO model of
            FICL_HASH</tt></b> <br>
            <b><tt>&nbsp;cell: .parent</tt></b> <br>
            <b><tt>&nbsp;cell: .size</tt></b> <br>
            <b><tt>&nbsp;cell: .hash</tt></b> </p>
        </blockquote>
        <blockquote>
            <p><b><tt>&nbsp;: push&nbsp; drop&nbsp; &gt;search ;</tt></b>
            <br>
            <b><tt>&nbsp;: pop&nbsp;&nbsp; 2drop previous ;</tt></b>
            <br>
            <b><tt>&nbsp;: set-current&nbsp;&nbsp; drop
            set-current ;</tt></b> <br>
            <b><tt>&nbsp;: words&nbsp;&nbsp; --&gt; push&nbsp;
            words previous ;</tt></b> <br>
            <b><tt>end-class</tt></b> </p>
        </blockquote>
        <blockquote>
            <p><b><tt>: named-wid&nbsp;&nbsp; ( &quot;name&quot;
            -- )&nbsp;</tt></b> <br>
            <b><tt>&nbsp;&nbsp;&nbsp; wordlist&nbsp; postpone
            c-wordlist&nbsp; metaclass =&gt; ref ;</tt></b></p>
        </blockquote>
        <p>In this case, <tt>c-wordlist</tt> describes Ficl's
        wordlist structure; named-wid creates a wordlist and
        binds it to a ref instance of <tt>c-wordlist</tt>. The
        fancy footwork with <tt>POSTPONE</tt> and early binding
        is required because classes are immediate. An equivalent
        way to define named-wid with late binding is:&nbsp; </p>
        <blockquote>
            <p><b><tt>: named-wid&nbsp;&nbsp; ( &quot;name&quot;
            -- )</tt></b> <br>
            <b><tt>&nbsp;&nbsp;&nbsp; wordlist&nbsp; postpone
            c-wordlist&nbsp; --&gt; ref ;</tt></b></p>
        </blockquote>
        <p>To do the same thing at run-time (and call it
        my-wordlist):&nbsp; </p>
        <blockquote>
            <p><b><tt>wordlist&nbsp; c-wordlist --&gt; ref&nbsp;
            my-wordlist</tt></b></p>
        </blockquote>
        <p>Now you can deal with the wordlist through the ref
        instance:&nbsp; </p>
        <blockquote>
            <p><b><tt>my-wordlist --&gt; push</tt></b> <br>
            <b><tt>my-wordlist --&gt; set-current</tt></b> <br>
            <b><tt>order</tt></b></p>
        </blockquote>
        <p>Ficl can also model linked lists and other structures
        that contain pointers to structures of the same or
        different types. The class constructor word <a
        href="#exampleref:"><b><tt>ref:</tt></b></a> makes an
        aggregate reference to a particular class. See the <a
        href="#glossinstance">instance variable glossary</a> for
        an <a href="#exampleref:">example</a>.&nbsp; </p>
        <p>Ficl can make arrays of instances, and aggregate
        arrays into class descripions. The <a href="#glossclass">class
        methods</a> <b><tt>array</tt></b> and <b><tt>new-array</tt></b>
        create uninitialized and initialized arrays,
        respectively, of a class. In order to initialize an
        array, the class must define (or inherit) a reasonable <b><tt>init</tt></b>
        method. <b><tt>New-array</tt></b> invokes it on each
        member of the array in sequence from lowest to highest.
        Array instances and array members use the object methods <b><tt>index</tt></b>,
        <b><tt>next</tt></b>, and <b><tt>prev</tt></b> to
        navigate. Aggregate a member array of objects using <a
        href="#arraycolon"><b><tt>array:</tt></b></a>. The
        objects are not automatically initialized in this case -
        your class initializer has to call <b><tt>array-init</tt></b>
        explicitly if you want this behavior.&nbsp; </p>
        <p>For further examples of OOP in Ficl, please see the
        source file ficl/softwords/ficlclass.fr. This file wraps
        several Ficl internal data structures in objects and
        gives use examples.&nbsp;</p>
        </td>
    </tr>
    <tr>
        <td><h2><a name="cstring"></a>Ficl String classes</h2>
        <p>c-string (ficl 2.04 and later) is a reasonably useful
        dynamic string class. Source code for the class is
        located in ficl/softwords/string.fr. Features: dynamic
        creation and resizing; deletion, char cout,
        concatenation, output, comparison; creation from quoted
        string constant (s&quot;).</p>
        <p>Examples of use:</p>
        <blockquote>
            <pre><strong>c-string --&gt; new homer
s&quot; In this house, &quot; homer --&gt; set
s&quot; we obey the laws of thermodynamics!&quot; homer --&gt; cat
homer --&gt; type</strong></pre>
        </blockquote>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="oopgloss"></a>OOP Glossary</h2>
        <p>Note: with the exception of the binding operators (the
        first two definitions here), all of the words in this
        section are internal factors that you don't need to worry
        about. These words provide method binding for all classes
        and instances. Also described are supporting words and
        execution factors. All are defined in softwords/oo.fr. </p>
        <dl>
            <dt><b><tt>--&gt;&nbsp;&nbsp; ( instance class
                &quot;method-name&quot; -- xn )</tt></b></dt>
            <dd>Late binding: looks up and executes the given
                method in the context of the class on top of the
                stack.&nbsp;</dd>
            <dt><b><tt>=&gt;&nbsp;&nbsp; comp: ( class meta
                &quot;method-name&quot; -- )&nbsp; exec: ( inst
                class -- xn )</tt></b></dt>
            <dd>Early binding: compiles code to execute the
                method of the class specified at compile time.</dd>
            <dt><b><tt>do-do-instance</tt></b></dt>
            <dd>When executed, causes the instance to push its (
                instance class ) stack signature. Implementation
                factor of <b><tt>metaclass --&gt; sub</tt></b>.
                Compiles <b><tt>.do-instance</tt></b> in the
                context of a class; <tt>.do-instance</tt>
                implements the <tt>does&gt;</tt> part of a named
                instance.&nbsp;</dd>
            <dt><b><tt>exec-method&nbsp;&nbsp; ( instance class
                c-addr u -- xn )</tt></b></dt>
            <dd>Given the address and length of a message (method
                name) on the stack, finds the method in the
                context of the specified class and invokes it.
                Upon entry to the method, the instance and class
                are on top of the stack, as usual. If unable to
                find the method, prints an error message and
                aborts.</dd>
            <dt><b><tt>find-method-xt&nbsp;&nbsp; ( class
                &quot;method-name&quot; -- class xt )</tt></b></dt>
            <dd>Attempts to map the message to a method in the
                specified class. If successful, leaves the class
                and the execution token of the method on the
                stack. Otherwise prints an error message and
                aborts.</dd>
            <dt><b><tt>lookup-method&nbsp;&nbsp; ( class c-addr u
                -- class xt )</tt></b></dt>
            <dd>Given the address and length of a message (method
                name) on the stack, finds the method in the
                context of the specified class. If unable to find
                the method, prints an error message and aborts.</dd>
            <dt><b><tt>parse-method&nbsp;&nbsp; comp: (
                &quot;method-name&quot; -- )&nbsp; exec: ( --
                c-addr u )</tt></b></dt>
            <dd>Parse &quot;name&quot; from the input stream and
                compile code to push its length and address when
                the enclosing definition runs.</dd>
        </dl>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h3><a name="glossinstance"></a>Instance Variable
        Glossary</h3>
        <p><b>Note</b>: these words are only visible when
        creating a subclass! To create a subclass, use the <tt>sub</tt>
        method on <tt>object</tt> or any class derived from it (<i>not</i>
        <tt>metaclass</tt>). Source code for Ficl OOP is in
        ficl/softwords/oo.fr. </p>
        <ul>
            <li>Instance variable words do two things: they
                create methods that do an action appropriate for
                the type of instance variable they represent, and
                they reserve space in the class template for the
                instance variable. We'll use the term <i>instance
                variable</i> to refer both to the method that
                gives access to a particular field of an object,
                and to the field itself. Rather than give
                esentially the same example over and over, here's
                one example that shows several of the instance
                variable construction words in use:</li>
            <li><ul>
                </ul>
            </li>
            <li><tt>object subclass c-example</tt></li>
            <li><tt>&nbsp;&nbsp;&nbsp;
                cell:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                .cell0</tt></li>
            <li><br>
                <tt>&nbsp;&nbsp;&nbsp; c-4byte&nbsp;&nbsp; obj:
                .nCells</tt> <br>
                <tt>&nbsp; 4 c-4byte array: .quad</tt> <br>
                <tt>&nbsp;&nbsp;&nbsp;
                char:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                .length</tt> <br>
                <tt>&nbsp;79
                chars:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                .name</tt> <br>
                <tt>end-class</tt> This class only defines
                instance variables, and it inherits some methods
                from <tt>object</tt>. Each untyped instance
                variable (.cell0, .length, .name) pushes its
                address when executed. Each object instance
                variable pushes the address and class of the
                aggregate object. Similar to C, an array instance
                variable leaves its base address (and its class)
                when executed. The word <tt>subclass</tt> is
                shorthand for &quot;<tt>--&gt; sub</tt>&quot;&nbsp;
                <br>
                &nbsp; </li>
        </ul>
        <dl>
            <dt><font size="2" face="Courier New"><strong>cell:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset &quot;name&quot; -- offset' )</strong></font></dt>
            <dt><font size="2" face="Courier New"><strong>Execution:&nbsp;
                ( -- cell-addr )</strong></font></dt>
            <dd>Create an untyped instance variable one cell
                wide. The instance variable leaves its payload's
                address when executed.&nbsp;</dd>
            <dt><b><tt>cells:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset nCells &quot;name&quot; -- offset' )</tt></b></dt>
            <dt><b><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                Execution:&nbsp; ( -- cell-addr )</tt></b></dt>
            <dd>Create an untyped instance variable n cells wide.</dd>
            <dt><b><tt>char:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset &quot;name&quot; -- offset' )</tt></b></dt>
            <dt><b><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                Execution:&nbsp; ( -- char-addr )</tt></b></dt>
            <dd>Create an untyped member variable one char wide</dd>
            <dt><b><tt>chars:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset nChars &quot;name&quot; -- offset' )</tt></b></dt>
            <dt><b><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                Execution:&nbsp; ( -- char-addr )</tt></b></dt>
            <dd>Create an untyped member variable n chars wide.</dd>
            <dt><b><tt>obj:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset class meta &quot;name&quot; -- offset' )</tt></b></dt>
            <dt><b><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                Execution:&nbsp; ( -- instance class )</tt></b></dt>
            <dd>Aggregate an uninitialized instance of <b>class</b>
                as a member variable of the class under
                construction.</dd>
            <dt><a name="arraycolon"></a><b><tt>array:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset n class meta &quot;name&quot; -- offset'
                )</tt></b></dt>
            <dt><b><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                Execution:&nbsp; ( -- instance class )</tt></b></dt>
            <dd>Aggregate an uninitialized array of instances of
                the class specified as a member variable of the
                class under construction.</dd>
            <dt><a name="exampleref:"></a><b><tt>ref:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( offset class meta &quot;name&quot; -- offset' )</tt></b></dt>
            <dt><b><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                Execution:&nbsp; ( -- ref-instance ref-class )</tt></b></dt>
            <dd>Aggregate a reference to a class instance. There
                is no way to set the value of an aggregated ref -
                it's meant as a way to manipulate existing data
                structures with a Ficl OO model. For example, if
                your system contains a linked list of 4 byte
                quantities, you can make a class that represents
                a list element like this:&nbsp;</dd>
            <dd><dl>
                    <dd><tt>object subclass c-4list</tt></dd>
                    <dd><tt>c-4list ref: .link</tt></dd>
                    <dd><tt>c-4byte obj: .payload</tt></dd>
                    <dd><tt>end-class;</tt></dd>
                    <dd><tt>address-of-existing-list c-4list
                        --&gt; ref mylist</tt></dd>
                </dl>
            </dd>
            <dd>The last line binds the existing structure to an
                instance of the class we just created. The link
                method pushes the link value and the class
                c_4list, so that the link looks like an object to
                Ficl and like a struct to C (it doesn't carry any
                extra baggage for the object model - the Ficl
                methods alone take care of storing the class
                information).&nbsp;</dd>
            <dd>Note: Since a ref: aggregate can only support one
                class, it's good for modeling static structures,
                but not appropriate for polymorphism. If you want
                polymorphism, aggregate a c_ref (see classes.fr
                for source) into your class - it has methods to
                set and get an object.</dd>
            <dd>By the way, it is also possible to construct a
                pair of classes that contain aggregate pointers
                to each other. Here's a rough example:</dd>
            <dd><dl>
                    <dd><tt>object subclass c-fee</tt></dd>
                    <dd><tt>object subclass c-fie</tt></dd>
                    <dd><tt>&nbsp;&nbsp;&nbsp; c-fee ref: .fee</tt></dd>
                    <dd><tt>end-class&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                        \ done with c-fie</tt></dd>
                    <dd><tt>&nbsp;&nbsp;&nbsp; c-fie ref: .fie</tt></dd>
                    <dd><br>
                        <tt>end-class&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                        \ done with c-fee</tt></dd>
                </dl>
            </dd>
        </dl>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h3><a name="glossclass"></a>Class Methods Glossary</h3>
        <p>These words are methods of <tt>metaclass</tt>. They
        define the manipulations that can be performed on
        classes. Methods include various kinds of instantiation,
        programming tools, and access to member variables of
        classes. Source is in softwords/oo.fr. </p>
        <dl>
            <dt><b><tt>instance&nbsp;&nbsp;&nbsp;&nbsp; ( class
                metaclass &quot;name&quot; -- instance class )</tt></b>&nbsp;</dt>
            <dd>Create an uninitialized instance of the class,
                giving it the name specified. The method leaves
                the instance 's signature on the stack (handy if
                you want to initialize). Example:</dd>
            <dd><tt>c_ref --&gt; instance uninit-ref&nbsp; 2drop</tt></dd>
            <dt><b><tt>new&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass &quot;name&quot; -- )</tt></b>&nbsp;</dt>
            <dd>Create an initialized instance of class, giving
                it the name specified. This method calls init to
                perform initialization.&nbsp;</dd>
            <dt><b><tt>array&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( nObj class metaclass &quot;name&quot; -- nObjs
                instance class )</tt></b>&nbsp;</dt>
            <dd>Create an array of nObj instances of the
                specified class. Instances are not initialized.
                Example:</dd>
            <dd><tt>10 c_4byte --&gt; array&nbsp;
                40-raw-bytes&nbsp; 2drop drop</tt></dd>
            <dt><b><tt>new-array&nbsp;&nbsp;&nbsp; ( nObj class
                metaclass &quot;name&quot; -- )</tt></b>&nbsp;</dt>
            <dd>Creates an initialized array of nObj instances of
                the class. Same syntax as <tt>array</tt></dd>
            <dt><a name="alloc"></a><b><tt>alloc&nbsp;&nbsp; (
                class metaclass -- instance class )</tt></b></dt>
            <dd>Creates an anonymous instance of <b>class</b>
                from the heap (using a call to ficlMalloc() to
                get the memory). Leaves the payload and class
                addresses on the stack. Usage example:</dd>
            <dd><tt>c-ref --&gt; alloc 2constant instance-of-ref</tt></dd>
            <dd>Creates a double-cell constant that pushes the
                payload and class address of a heap instance of
                c-ref.</dd>
            <dt><a name="allocarray"></a><b><tt>alloc-array&nbsp;&nbsp;
                ( nObj class metaclass -- instance class )</tt></b></dt>
            <dd>Same as new-array, but creates anonymous
                instances from the heap using a call to
                ficlMalloc(). Each instance is initialized using
                the class's <tt>init</tt> method</dd>
            <dt><b><tt>ref&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance-addr class metaclass &quot;name&quot;
                -- )</tt></b>&nbsp;</dt>
            <dd>Make a ref instance of the class that points to
                the supplied instance address. No new instance
                space is allotted. Instead, the instance refers
                to the address supplied on the stack forever
                afterward. For wrapping existing structures.</dd>
        </dl>
        <dl>
            <dt><b><tt>sub&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass -- old-wid addr[size] size )</tt></b></dt>
            <dd>Derive a subclass. You can add or override
                methods, and add instance variables. Alias: <tt>subclass</tt>.
                Examples:</dd>
            <dd><dl>
                    <dd><tt>c_4byte --&gt; sub c_special4byte</tt></dd>
                    <dd><tt>( your new methods and instance
                        variables here )</tt></dd>
                    <dd><tt>end-class</tt></dd>
                    <dd>or</dd>
                    <dd><tt>c_4byte subclass c_special4byte</tt></dd>
                    <dd><tt>( your new methods and instance
                        variables here )</tt></dd>
                    <dd><tt>end-class</tt></dd>
                </dl>
            </dd>
            <dt><b><tt>.size&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass -- instance-size )</tt></b>&nbsp;</dt>
            <dd>Returns address of the class's instance size
                field, in address units. This is a metaclass
                member variable.</dd>
            <dt><b><tt>.super&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass -- superclass )</tt></b>&nbsp;</dt>
            <dd>Returns address of the class's superclass field.
                This is a metaclass member variable.</dd>
            <dt><b><tt>.wid&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass -- wid )</tt></b>&nbsp;</dt>
            <dd>Returns the address of the class's wordlist ID
                field. This is a metaclass member variable.</dd>
            <dt><b><tt>get-size</tt></b></dt>
            <dd>Returns the size of an instance of the class in
                address units. Imeplemented as</dd>
            <dd><tt>: get-size&nbsp;&nbsp; metaclass =&gt; .size
                @ ;</tt></dd>
            <dt><b><tt>get-wid</tt></b></dt>
            <dd>Returns the wordlist ID of the class. Implemented
                as&nbsp;</dd>
            <dd><tt>: get-wid&nbsp;&nbsp; metaclass =&gt; .wid @
                ;</tt></dd>
            <dt><b><tt>get-super</tt></b></dt>
            <dd>Returns the class's superclass. Implemented as</dd>
            <dd><tt>: get-super&nbsp;&nbsp; metaclass =&gt;
                .super @ ;</tt></dd>
            <dt><b><tt>id&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass -- c-addr u )</tt></b>&nbsp;</dt>
            <dd>Returns the address and length of a string that
                names the class.</dd>
            <dt><b><tt>methods&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (
                class metaclass -- )</tt></b>&nbsp;</dt>
            <dd>Lists methods of the class and all its
                superclasses</dd>
            <dt><b><tt>offset-of&nbsp;&nbsp;&nbsp; ( class
                metaclass &quot;name&quot; -- offset )</tt></b></dt>
            <dd>Pushes the offset from the instance base address
                of the named member variable. If the name is not
                that of an instance variable method, you get
                garbage. There is presently no way to detect this
                error. Example:</dd>
            <dd><dl>
                    <dd><tt>metaclass --&gt; offset-of .wid</tt></dd>
                </dl>
            </dd>
            <dt><b><tt>pedigree&nbsp;&nbsp;&nbsp;&nbsp; ( class
                metaclass -- )</tt></b>&nbsp;</dt>
            <dd>Lists the pedigree of the class (inheritance
                trail)</dd>
            <dt><b><tt>see&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( class metaclass &quot;name&quot; -- )</tt></b>&nbsp;</dt>
            <dd>Decompiles the specified method - obect version
                of <tt>SEE</tt>, from the <tt>TOOLS</tt> wordset.</dd>
        </dl>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h3><a name="objectgloss"></a><tt>object</tt>
        base-class Methods Glossary</h3>
        <p>These are methods that are defined for all instances
        by the base class <tt>object</tt>. The methods include
        default initialization, array manipulations, aliases of
        class methods, upcasting, and programming tools. </p>
        <dl>
            <dt><b><tt>init&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance class -- )</tt></b><b>&nbsp;</b></dt>
            <dd>Default initializer called automatically for all
                instances created with <tt>new</tt> or <tt>new-array</tt>.
                Zero-fills the instance. You do not normally need
                to invoke <tt>init</tt> explicitly.</dd>
            <dt><b><tt>array-init&nbsp;&nbsp; ( nObj instance
                class -- )</tt></b>&nbsp;</dt>
            <dd>Applies <tt>init</tt> to an array of objects
                created by <tt>new-array</tt>. Note that <tt>array:</tt>
                does not cause aggregate arrays to be initialized
                automatically. You do not normally need to invoke
                <tt>array-init</tt> explicitly.</dd>
            <dt><a name="oofree"></a><b><tt>free&nbsp;&nbsp; (
                instance class -- )</tt></b></dt>
            <dd>Releases memory used by an instance previously
                created with <tt>alloc</tt> or <tt>alloc-array</tt>.
                Note - this method is not presently protected
                against accidentally deleting something from the
                dictionary. If you do this, Bad Things are likely
                to happen. Be careful for the moment to apply
                free only to instances created with <tt>alloc</tt>
                or <tt>alloc-array</tt>.</dd>
            <dt><b><tt>class&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance class -- class metaclass )</tt></b>&nbsp;</dt>
            <dd>Convert an object signature into that of its
                class. Useful for calling class methods that have
                no object aliases.</dd>
            <dt><b><tt>super&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance class -- instance parent-class )</tt></b>&nbsp;</dt>
            <dd>Upcast an object to its parent class. The parent
                class of <tt>object</tt> is zero. Useful for
                invoking an overridden parent class method.</dd>
            <dt><b><tt>pedigree&nbsp;&nbsp;&nbsp;&nbsp; (
                instance class -- )</tt></b>&nbsp;</dt>
            <dd>Display an object's pedigree - its chain of
                inheritance. This is an alias for the
                corresponding class method.</dd>
            <dt><b><tt>size&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance class -- sizeof(instance) )</tt></b>&nbsp;</dt>
            <dd>Returns the size, in address units, of one
                instance. Does not know about arrays! This is an
                alias for the class method <tt>get-size</tt></dd>
            <dt><b><tt>methods&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (
                instance class -- )</tt></b>&nbsp;</dt>
            <dd>Class method alias. Displays the list of methods
                of the class and all superclasses of the
                instance.</dd>
            <dt><b><tt>index&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( n instance class -- instance[n] class )</tt></b>&nbsp;</dt>
            <dd>Convert array-of-objects base signature into
                signature for array element n. No check for
                bounds overflow. Index is zero-based, like C,
                so&nbsp;</dd>
            <dd><dl>
                    <dd><tt>0 my-obj --&gt; index</tt>&nbsp;</dd>
                </dl>
            </dd>
            <dd>is equivalent to&nbsp;</dd>
            <dd><dl>
                    <dd><tt>my-obj</tt></dd>
                </dl>
            </dd>
            <dd>Check out the <a href="#minusrot">description of <tt>-ROT</tt></a>
                for help in dealing with indices on the stack.</dd>
            <dt><b><tt>next&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance[n] class -- instance[n+1] class )</tt></b>&nbsp;</dt>
            <dd>Convert an array-object signature&nbsp; into the
                signature of the next object in the array. No
                check for bounds overflow.</dd>
            <dt><b><tt>prev&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
                ( instance[n] class -- instance[n-1] class )</tt></b>&nbsp;</dt>
            <dd><br>
                Convert an object signature into the signature of
                the previous object in the array. No check for
                bounds underflow.</dd>
        </dl>
        </td>
    </tr>
</table>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h3><a name="stockclasses"></a>Supplied Classes (See
        classes.fr)</h3>
        <dl>
            <dt><b><tt>metaclass&nbsp;</tt></b></dt>
            <dd>Describes all classes of Ficl. Contains class
                methods. Should never be directly instantiated or
                subclassed. Defined in oo.fr. Methods described
                above.</dd>
            <dt><b><tt>object</tt></b><b>&nbsp;</b></dt>
            <dd>Mother of all Ficl objects. Defines default
                initialization and array indexing methods.
                Defined in oo.fr. Methods described above.</dd>
            <dt><b><tt>c-ref</tt></b><b>&nbsp;</b></dt>
            <dd>Holds the signature of another object. Aggregate
                one of these into a data structure or container
                class to get polymorphic behavior. Methods &amp;
                members:&nbsp;</dd>
            <dd><tt>get&nbsp;&nbsp; ( inst class -- ref-inst
                ref-class )</tt></dd>
            <dd><tt>set&nbsp;&nbsp; ( ref-inst ref-class inst
                class -- )</tt></dd>
            <dd><tt>.instance&nbsp;&nbsp; ( inst class -- a-addr
                ) </tt>cell member that holds the instance</dd>
            <dd><tt>.class&nbsp;&nbsp; ( inst class -- a-addr ) </tt>cell
                member that holds the class</dd>
            <dt><b><tt>c-byte&nbsp;</tt></b></dt>
            <dd>Primitive class derived from <tt>object</tt>,
                with a 1-byte payload. Set and get methods
                perform correct width fetch and store. Methods
                &amp; members:</dd>
            <dd><tt>get&nbsp;&nbsp; ( inst class -- c )</tt></dd>
            <dd><tt>set&nbsp;&nbsp; ( c inst class -- )</tt></dd>
            <dd><tt>.payload&nbsp;&nbsp; ( inst class -- addr ) </tt>member
                holds instance's value</dd>
            <dt><b><tt>c-2byte</tt></b>&nbsp;</dt>
            <dd>Primitive class derived from <tt>object</tt>,
                with a 2-byte payload. Set and get methods
                perform correct width fetch and store. Methods
                &amp; members:</dd>
            <dd><tt>get&nbsp;&nbsp; ( inst class -- 2byte )</tt></dd>
            <dd><tt>set&nbsp;&nbsp; ( 2byte inst class -- )</tt></dd>
            <dd><tt>.payload&nbsp;&nbsp; ( inst class -- addr ) </tt>member
                holds instance's value</dd>
            <dt><b><tt>c-4byte</tt></b>&nbsp;</dt>
            <dd>Primitive class derived from <tt>object</tt>,
                with a 4-byte (cell) payload. Set and get methods
                perform correct width fetch and store. Methods
                &amp; members:</dd>
            <dd><tt>get&nbsp;&nbsp; ( inst class -- x )</tt></dd>
            <dd><tt>set&nbsp;&nbsp; ( x inst class -- )</tt></dd>
            <dd><tt>.payload&nbsp;&nbsp; ( inst class -- addr ) </tt>member
                holds instance's value</dd>
            <dt><b><tt>c-ptr</tt></b></dt>
            <dd>Base class derived from <tt>object</tt> for
                pointers to non-object types. This class is not
                complete by itself: several methods depend on a
                derived class definition of <tt>@size</tt>.
                Methods &amp; members:</dd>
            <dd><tt>.addr&nbsp;&nbsp; ( inst class -- a-addr )</tt>
                member variable - holds the pointer address</dd>
            <dd><tt>get-ptr&nbsp;&nbsp; ( inst class -- ptr )</tt></dd>
            <dd><tt>set-ptr&nbsp;&nbsp; ( ptr inst class -- )</tt></dd>
            <dd><tt>inc-ptr&nbsp;&nbsp; ( inst class -- )</tt>
                Adds @size to pointer address</dd>
            <dd><tt>dec-ptr&nbsp;&nbsp; ( inst class -- )</tt>
                Subtracts @size from pointer address</dd>
            <dd><tt>index-ptr&nbsp;&nbsp; ( i inst class -- )</tt>
                Adds i*@size to pointer address</dd>
            <dt><b><tt>c-bytePtr</tt></b></dt>
            <dd>Pointer to byte derived from c-ptr. Methods &amp;
                members:</dd>
            <dd><tt>@size&nbsp;&nbsp; ( inst class -- size )</tt>
                Push size of the pointed-to thing</dd>
            <dd><tt>get&nbsp;&nbsp; (&nbsp; inst class -- c ) </tt>Fetch
                the pointer's referent byte</dd>
            <dd><tt>set&nbsp;&nbsp; ( c inst class -- ) </tt>Store
                c at the pointer address</dd>
            <dt><b><tt>c-2bytePtr</tt></b></dt>
            <dd>Pointer to double byte derived from c-ptr.
                Methods &amp; members:</dd>
            <dd><tt>@size&nbsp;&nbsp; ( inst class -- size )</tt>
                Push size of the pointed-to thing</dd>
            <dd><tt>get&nbsp;&nbsp; (&nbsp; inst class -- x ) </tt>Fetch
                the pointer's referent 2byte</dd>
            <dd><tt>set&nbsp;&nbsp; ( x inst class -- )</tt>
                Store 2byte x at the pointer address</dd>
            <dt><b><tt>c-cellPtr</tt></b></dt>
            <dd>Pointer to cell derived from c-ptr. Methods &amp;
                members:</dd>
            <dd><tt>@size&nbsp;&nbsp; ( inst class -- size )</tt>
                Push size of the pointed-to thing</dd>
            <dd><tt>get&nbsp;&nbsp; (&nbsp; inst class -- x ) </tt>Fetch
                the pointer's referent cell</dd>
            <dd><tt>set&nbsp;&nbsp; ( x inst class -- )</tt>
                Storex at the pointer address</dd>
            <dt><b><tt>c-string</tt></b>&nbsp;</dt>
            <dd>Dynamically allocated string similar to MFC
                CString (Partial list of methods follows)</dd>
            <dd><font size="2" face="Courier New">set ( c-addr u
                2this -- ) </font><font size="3">Initialize
                buffer to the specified string</font></dd>
            <dd><font size="2" face="Courier New">get ( 2this --
                c-addr u ) Return buffer contents as counted
                string</font></dd>
            <dd><font size="2" face="Courier New">cat ( c-addr u
                2this -- ) Append given string to end of buffer</font></dd>
            <dd><font size="2" face="Courier New">compare (
                2string 2this -- n ) Return result of lexical
                compare</font></dd>
            <dd><font size="2" face="Courier New">type ( 2this --
                ) Print buffer to the output stream</font></dd>
            <dd><font size="2" face="Courier New">hashcode (
                2this -- x ) Return hashcode of string (as in
                dictionary)</font></dd>
            <dd><font size="2" face="Courier New">free ( 2this --
                ) Release internal buffer</font></dd>
        </dl>
        </td>
    </tr>
</table>

<hr>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><dl>
            <dd><h2><a name="extras"></a>Ficl extras</h2>
                <h3>Number syntax</h3>
                <p>You can precede a number with &quot;0x&quot;,
                as in C, and it will be interpreted as a hex
                value regardless of the value of <tt>BASE</tt>.
                Example:&nbsp; </p>
                <dl>
                    <dt><tt>ok&gt; decimal 123 . cr</tt> <br>
                        <tt>123&nbsp;</tt> <br>
                        <tt>ok&gt; 0x123 . cr</tt> <br>
                        <tt>291&nbsp;</tt></dt>
                </dl>
                <h3>Search order words</h3>
                <p>Note: Ficl resets the search order whenever it
                does <tt>ABORT</tt>. If you don't like this
                behavior, just comment out the
                dictResetSearchOrder() lines in ficlExec().&nbsp;
                <br>
                &nbsp; </p>
            </dd>
            <dt><a name="tosearch"></a><tt>&gt;search&nbsp;&nbsp;
                ( wid -- )</tt></dt>
            <dd>Push <tt>wid</tt> onto the search order. Many of
                the other search order words are written in terms
                of the <tt>SEARCH&gt;</tt> and <tt>&gt;SEARCH</tt>
                primitives.</dd>
            <dt><a name="searchfrom"></a><tt>search&gt;&nbsp;&nbsp;
                ( -- wid )</tt></dt>
            <dd>Pop <tt>wid</tt> off the search order</dd>
            <dt><a name="ficlsetcurrent"></a><tt>ficl-set-current&nbsp;&nbsp;
                ( wid -- old-wid )</tt></dt>
            <dd>Set wid as compile wordlist, leaving the previous
                compile wordlist on the stack</dd>
            <dt><a name="ficlvocabulary"></a><tt>ficl-vocabulary&nbsp;&nbsp;
                ( nBins &quot;name&quot; -- )</tt></dt>
            <dd>Creates a <tt>ficl-wordlist</tt> with the
                specified number of hash table bins, binds it to
                the name, and associates the semantics of <tt>vocabulary</tt>
                with it (replaces the top wid in the search order
                list with its own wid when executed)</dd>
            <dt><a name="ficlwordlist"></a><tt>ficl-wordlist&nbsp;&nbsp;
                ( nBins -- wid )</tt></dt>
            <dd>Creates a wordlist with the specified number of
                hash table bins, and leaves the address of the
                wordlist on the stack. A <tt>ficl-wordlist</tt>
                behaves exactly as a regular wordlist, but it may
                search faster depending on the number of bins
                chosen and the number of words it contains at
                search time. As implemented in ficl, a <tt>wordlist</tt>
                is single threaded by default.&nbsp;</dd>
            <dt><a name="ficlforgetwid"></a><tt>forget-wid&nbsp;&nbsp;
                ( wid -- )</tt></dt>
            <dd>Iterates through the specified wordlist and
                unlinks all definitions whose xt addresses are
                greater than or equal to the value of <tt>HERE</tt>,
                the dictionary fill pointer.&nbsp;</dd>
            <dt><a name="ficlhide"></a><tt>hide&nbsp;&nbsp; ( --
                current-wid-was )</tt></dt>
            <dd>Push the <tt>hidden</tt> wordlist onto the search
                order, and set it as the current compile wordlist
                (unsing <tt>ficl-set-current</tt>). Leaves the
                previous compile wordlist ID. I use this word to
                hide implementation factor words that have low
                reuse potential so that they don't clutter the
                default wordlist. To undo the effect of hide,
                execute&nbsp; <b><tt>previous set-current</tt></b></dd>
            <dt><a name="ficlhidden"></a><tt>hidden&nbsp;&nbsp; (
                -- wid )</tt></dt>
            <dd>Wordlist for storing implementation factors of
                ficl provided words. To see what's in there,
                try:&nbsp; <b><tt>hide words previous set-current</tt></b></dd>
            <dt><tt>wid-set-super&nbsp;&nbsp; ( wid -- )</tt></dt>
            <dd>Ficl wordlists have a parent wordlist pointer
                that is not specified in standard Forth. Ficl
                initializes this pointer to NULL whenever it
                creates a wordlist, so it ordinarily has no
                effect. This word sets the parent pointer to the
                wordlist specified on the top of the stack.
                Ficl's implementation of <tt>SEARCH-WORDLIST</tt>
                will chain backward through the parent link of
                the wordlist when searching. This simplifies
                Ficl's object model in that the search order does
                not need to reflect an object's class hierarchy
                when searching for a method. It is possible to
                implement Ficl object syntax in strict ANS Forth,
                but method finders need to manipulate the search
                order explicitly.</dd>
        </dl>
        <h3>User variables</h3>
        <dl>
            <dt><tt>user&nbsp;&nbsp; ( -- ) name</tt></dt>
            <dd>Create a user variable with the given name. User
                variables are virtual machine local. Each VM
                allocates a fixed amount of storage for them. You
                can change the maximum number of user variables
                allowed by defining FICL_USER_CELLS on your
                compiiler's command line. Default is 16 user
                cells.</dd>
        </dl>
        <h3>Miscellaneous</h3>
        <dl>
            <dt><tt>-roll&nbsp;&nbsp; ( xu xu-1 ... x0 u -- x0
                xu-1 ... x1 )&nbsp;</tt></dt>
            <dd>Rotate u+1 items on top of the stack after
                removing u. Rotation is in the opposite sense to <tt>ROLL</tt></dd>
        </dl>
        <dl>
            <dt><a name="minusrot"></a><tt>-rot&nbsp;&nbsp; ( a b
                c -- c a b )</tt></dt>
            <dd>Rotate the top three stack entries, moving the
                top of stack to third place. I like to think of
                this as <tt>1</tt><sup><tt>1</tt></sup><tt>/</tt><sub><tt>2</tt></sub><tt>swap</tt>
                because it's good for tucking a single cell value
                behind a cell-pair (like an object).&nbsp;</dd>
        </dl>
        <dl>
            <dt><tt>.env&nbsp;&nbsp; ( -- )</tt></dt>
            <dd>List all environment variables of the system</dd>
            <dt><tt>.hash&nbsp;&nbsp; ( -- )</tt></dt>
            <dd>List hash table performance statistics of the
                wordlist that's first in the search order</dd>
            <dt><tt>.ver&nbsp;&nbsp; ( -- )</tt></dt>
            <dd>Display ficl version ID</dd>
            <dt><tt>&gt;name&nbsp;&nbsp; ( xt -- c-addr u )</tt></dt>
            <dd>Convert a word's execution token into the address
                and length of its name</dd>
            <dt><tt>body&gt;&nbsp;&nbsp; ( a-addr -- xt )</tt></dt>
            <dd>Reverses the effect of <tt>CORE</tt> word <tt>&gt;body
                </tt>(converts a parameter field address to an
                execution token)</dd>
            <dt><tt>compile-only</tt></dt>
            <dd>Mark the most recently defined word as being
                executable only while in compile state. Many <tt>immediate</tt>
                words have this property.</dd>
            <dt><tt>empty&nbsp;&nbsp; ( -- )</tt>&nbsp;</dt>
            <dd>Empty the parameter stack</dd>
            <dt><tt>endif</tt></dt>
            <dd>Synonym for <tt>THEN</tt></dd>
            <dt><tt>parse-word&nbsp;&nbsp; ( &lt;spaces&gt;name
                -- c-addr u )</tt></dt>
            <dd>Skip leading spaces and parse name delimited by a
                space. c-addr is the address within the input
                buffer and u is the length of the selected
                string. If the parse area is empty, the resulting
                string has a zero length. (From the Standard)</dd>
            <dt><tt>w@&nbsp;&nbsp; ( addr -- x )</tt></dt>
            <dd>Fetch a 16 bit quantity from the specified
                address</dd>
            <dt><tt>w!&nbsp;&nbsp; ( x addr -- )</tt></dt>
            <dd>Store a 16 bit quantity to the specified address
                (the low 16 bits of the given value)</dd>
            <dt><tt>x.&nbsp;&nbsp; ( x -- )</tt></dt>
            <dd>Pop and display the value in hex format,
                regardless of the current value of <tt>BASE</tt></dd>
        </dl>
        <h3>FiclWin Extras (defined in testmain.c)</h3>
        <dl>
            <dt><tt>break&nbsp;&nbsp; ( -- )</tt></dt>
            <dd>Does nothing - just a handy place to set a
                debugger breakpoint</dd>
            <dt><tt>cd&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (
                &quot;directory-name&lt;newline&gt;&quot; -- )</tt></dt>
            <dd>Executes the Win32 chdir() function, changing the
                program's logged directory.</dd>
            <dt><a name="clock"></a><tt>clock&nbsp;&nbsp; ( --
                now )</tt></dt>
            <dd>Wrapper for the ANSI C clock() function. Returns
                the number of clock ticks elapsed since process
                start.</dd>
            <dt><a name="clockspersec"></a><tt>clocks/sec&nbsp;&nbsp;
                ( -- clocks_per_sec )</tt></dt>
            <dd>Pushes the number of ticks in a second as
                returned by <tt>clock</tt></dd>
            <dt><a name="ficlload"></a><tt>load&nbsp;&nbsp;&nbsp;
                ( &quot;filename&lt;newline&gt;&quot; -- )</tt></dt>
            <dd>Opens the Forth source file specified and loads
                it one line at a time, like <tt>INCLUDED (FILE)</tt></dd>
            <dt><tt>pwd&nbsp;&nbsp;&nbsp;&nbsp; ( -- )</tt></dt>
            <dd>Prints the current working directory as set by <tt>cd</tt></dd>
            <dt><tt>system&nbsp; (
                &quot;command&lt;newline&gt;&quot; -- )</tt></dt>
            <dd>Issues a command to a shell; implemented with the
                Win32 system() call.</dd>
            <dt><tt>spewhash&nbsp;&nbsp; (
                &quot;filename&lt;newline&gt;&quot; -- )</tt></dt>
            <dd>Dumps all threads of the current compilation
                wordlist to the specified text file. This was
                useful when I thought there might be some point
                in attempting to optimize the hash function. I no
                longer harbor those illusions.</dd>
            <dd><h3>FiclWin Exclusives (no source provided)</h3>
            </dd>
            <dt><tt>!oreg&nbsp;&nbsp; ( c -- )</tt></dt>
            <dd>Set the value of the simulated LED register as
                specified (0..255)</dd>
            <dt><tt>@ireg&nbsp;&nbsp; ( -- c )</tt></dt>
            <dd>Gets the value of the simulated switch block
                (0..255)</dd>
            <dt><tt>!dac&nbsp;&nbsp;&nbsp; ( c -- )</tt></dt>
            <dd>Sets the value of the bargraph control as
                specified. Valid values range from 0..255</dd>
            <dt><tt>@adc&nbsp;&nbsp;&nbsp; ( -- c )</tt></dt>
            <dd>Fetches the current position of the slider
                control. Range is 0..255</dd>
            <dt><tt>status&quot;&nbsp;&nbsp; (
                &quot;ccc&lt;quote&gt;&quot; -- )</tt></dt>
            <dd>Set the mainframe window's status line to the
                text specified, up to the first trailing quote
                character.</dd>
            <dt><a name="ficlms"></a><a
                href="http://www.taygeta.com/forth/dpans10.htm#10.6.2.1905"><tt>ms</tt></a><tt>&nbsp;&nbsp;
                ( u -- )</tt></dt>
            <dd>Causes the running virtual machine to sleep() for
                the number of milliseconds specified by the
                top-of-stack value.</dd>
        </dl>
        </td>
    </tr>
</table>

<hr>

<p><a name="ansinfo"></a></p>

<p>ANS Required Information </p>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><b>ANS Forth System</b> <br>
        <b>Providing names from the Core Extensions word
        set&nbsp;</b> <br>
        <b>Providing the Exception word set</b> <br>
        <b>Providing names from the Exception Extensions word set</b>
        <br>
        <b>Providing the Locals word set&nbsp;</b> <br>
        <b>Providing the Locals Extensions word set&nbsp;</b> <br>
        <b>Providing the Memory Allocation word set</b> <br>
        <b>Providing the Programming-Tools word set</b> <br>
        <b>Providing names from the Programming-Tools Extensions
        word set</b> <br>
        <b>Providing the Search-Order word set</b> <br>
        <b>Providing the Search-Order Extensions word set</b> <h3>Implementation-defined
        Options</h3>
        <p>The implementation-defined items in the following list
        represent characteristics and choices left to the
        discretion of the implementor, provided that the
        requirements of the Standard are met. A system shall
        document the values for, or behaviors of, each
        item.&nbsp; </p>
        <ul>
            <li><b>aligned address requirements (3.1.3.3
                Addresses);</b>&nbsp;</li>
            <li><br>
                <font color="#000000">System dependent. You can
                change the default address alignment by defining
                FICL_ALIGN on your compiler's command line. The
                default value is set to 2 in sysdep.h. This
                causes dictionary entries and <tt>ALIGN</tt> and <tt>ALIGNED</tt>
                to align on 4 byte boundaries. To align on <b>2</b><sup><b>n</b></sup>
                byte boundaries, set FICL_ALIGN to <b>n</b>.&nbsp;</font>
            </li>
            <li><b>behavior of 6.1.1320 EMIT for non-graphic
                characters</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Depends on target system, C
                runtime library, and your implementation of
                ficlTextOut().</font> </li>
            <li><b>character editing of 6.1.0695 ACCEPT and
                6.2.1390 EXPECT</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">None implemented in the
                versions supplied in words.c. Because ficlExec()
                is supplied a text buffer externally, it's up to
                your system to define how that buffer will be
                obtained.</font> </li>
            <li><b>character set (3.1.2 Character types, 6.1.1320
                EMIT, 6.1.1750 KEY)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Depends on target system
                and implementation of ficlTextOut()</font> </li>
            <li><b>character-aligned address requirements
                (3.1.3.3 Addresses)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl characters are one
                byte each. There are no alignment requirements.</font>
            </li>
            <li><b>character-set-extensions matching
                characteristics (3.4.2 Finding definition n</b><font
                color="#000000"><b>ames)</b>;&nbsp;</font></li>
            <li><br>
                <font color="#000000">No special processing is
                performed on characters beyond case-folding.
                Therefore, extended characters will not match
                their unaccented counterparts.</font> </li>
            <li><b>conditions under which control characters
                match a space delimiter (3.4.1.1 Delimiters)</b>;<font
                color="#FF6666">&nbsp;</font></li>
            <li><br>
                <font color="#000000">Ficl uses the Standard C
                function isspace() to distinguish space
                characters. The rest is up to your library
                vendor.</font> </li>
            <li><b>format of the control-flow stack (3.2.3.2
                Control-flow stack)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Uses the data stack</font> </li>
            <li><b>conversion of digits larger than thirty-five
                (3.2.1.2 Digit conversion)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">The maximum supported value
                of <tt>BASE</tt> is 36. Ficl will assertion fail
                in function ltoa of vm.c if the base is found to
                be larger than 36 or smaller than 2. There will
                be no effect if NDEBUG is defined</font>,
                however, other than possibly unexpected
                behavior.&nbsp; </li>
            <li><b>display after input terminates in 6.1.0695
                ACCEPT and 6.2.1390 EXPECT</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Target system dependent</font>
            </li>
            <li><b>exception abort sequence (as in 6.1.0680
                ABORT&quot;)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Does <tt>ABORT</tt></font> </li>
            <li><b>input line terminator (3.2.4.1 User input
                device)</b>;<font color="#FF0000">&nbsp;</font></li>
            <li><br>
                <font color="#000000">Target system dependent
                (implementation of outer loop that calls
                ficlExec)</font> </li>
            <li><b>maximum size of a counted string, in
                characters (3.1.3.4 Counted strings, 6.1.2450
                WORD)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">255</font> </li>
            <li><b>maximum size of a parsed string (3.4.1
                Parsing)</b>;&nbsp;</li>
            <li><br>
                Limited by available memory and the maximum
                unsigned value that can fit in a CELL (2<sup>32</sup>-1).&nbsp;
            </li>
            <li><b>maximum size of a definition name, in
                characters (3.3.1.2 Definition names)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl stores the first 31
                characters of a definition name.</font> </li>
            <li><b>maximum string length for 6.1.1345
                ENVIRONMENT?, in characters</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Same as maximum definition
                name length</font> </li>
            <li><b>method of selecting 3.2.4.1 User input device</b>;&nbsp;</li>
            <li><br>
                None supported. This is up to the target
                system&nbsp; </li>
            <li><b>method of selecting 3.2.4.2 User output device</b>;&nbsp;</li>
            <li><br>
                None supported. This is up to the target
                system&nbsp; </li>
            <li><b>methods of dictionary compilation (3.3 The
                Forth dictionary)</b>;&nbsp;</li>
            <li><b>number of bits in one address unit (3.1.3.3
                Addresses)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Target system dependent.
                Ficl generally supports processors that can
                address 8 bit quantities, but there is no
                dependency that I'm aware of.</font> </li>
            <li><b>number representation and arithmetic (3.2.1.1
                Internal number representation)</b>;&nbsp;</li>
            <li><br>
                System dependent. Ficl represents a CELL
                internally as a union that can hold INT32 (a
                signed 32 bit scalar value), UNS32 (32 bits
                unsigned), and an untyped pointer. No specific
                byte ordering is assumed.&nbsp; </li>
            <li><b>ranges for n, +n, u, d, +d, and ud (3.1.3
                Single-cell types, 3.1.4 Cell-pair types)</b>;&nbsp;</li>
            <li><br>
                Assuming a 32 bit implementation, range for
                signed single-cell values is -2<sup>31</sup>..2<sup>31</sup>-1.
                Range for unsigned single cell values is 0..2<sup>32</sup>-1.
                Range for signed double-cell values is -2<sup>63</sup>..2<sup>63</sup>-1.
                Range for unsigned single cell values is 0..2<sup>64</sup>-1.&nbsp;
            </li>
            <li><b>read-only data-space regions (3.3.3 Data
                space)</b>;</li>
            <li><br>
                None&nbsp; </li>
            <li><b>size of buffer at 6.1.2450 WORD (3.3.3.6 Other
                transient regions)</b>;&nbsp;</li>
            <li><br>
                Default is 255. Depends on the setting of nPAD in
                ficl.h.&nbsp; </li>
            <li><b>size of one cell in address units (3.1.3
                Single-cell types)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">System dependent, generally
                four.</font> </li>
            <li><b>size of one character in address units (3.1.2
                Character types)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">System dependent, generally
                one.</font> </li>
            <li><b>size of the keyboard terminal input buffer
                (3.3.3.5 Input buffers)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">This buffer is supplied by
                the host program. Ficl imposes no practical
                limit.</font> </li>
            <li><b>size of the pictured numeric output string
                buffer (3.3.3.6 Other transient regions)</b>;&nbsp;</li>
            <li><br>
                Default is 255 characters. Depends on the setting
                of nPAD in ficl.h.&nbsp; </li>
            <li><b>size of the scratch area whose address is
                returned by 6.2.2000 PAD (3.3.3.6 Other transient
                regions)</b>;&nbsp;</li>
            <li><br>
                Not presently supported&nbsp; </li>
            <li><b>system case-sensitivity characteristics (3.4.2
                Finding definition names)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl is not case sensitive</font>
            </li>
            <li><b>system prompt (3.4 The Forth text interpreter,
                6.1.2050 QUIT)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">&quot;ok&gt;&quot;</font> </li>
            <li><b>type of division rounding (3.2.2.1 Integer
                division, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0230
                /, 6.1.0240 /MOD, 6.1.1890 MOD)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Symmetric</font> </li>
            <li><b>values of 6.1.2250 STATE when true</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">One (no others)</font> </li>
            <li><b>values returned after arithmetic overflow
                (3.2.2.2 Other integer operations)</b>;&nbsp;</li>
            <li><br>
                System dependent. Ficl makes no special checks
                for overflow.&nbsp; </li>
            <li><b>whether the current definition can be found
                after 6.1.1250 DOES&gt; (6.1.0450 :)</b>.&nbsp;</li>
            <li><br>
                <font color="#000000">No. Definitions are
                unsmudged after ; only, and only then if no
                control structure matching problems have been
                detected.</font></li>
        </ul>
        <h3>Ambiguous Conditions</h3>
        <p>A system shall document the system action taken upon
        each of the general or specific ambiguous conditions
        identified in this Standard. See 3.4.4 Possible actions
        on an ambiguous condition.&nbsp; </p>
        <p>The following general ambiguous conditions could occur
        because of a combination of factors:&nbsp; </p>
        <ul>
            <li><dl>
                </dl>
            </li>
            <li><b>a name is neither a valid definition name nor
                a valid number during text interpretation (3.4
                The Forth text interpreter)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl does <tt>ABORT</tt>
                and prints the name followed by &quot; not
                found&quot;.</font> </li>
            <li><b>a definition name exceeded the maximum length
                allowed (3.3.1.2 Definition names)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl stores the first 31
                characters of the definition name, and uses all
                characters of the name in computing its hash
                code. The actual length of the name, up to 255
                characters, is stored in the definition's length
                field.</font> </li>
            <li><b>addressing a region not listed in 3.3.3 Data
                Space</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">No problem: all addresses
                in ficl are absolute. You can reach any 32 bit
                address in Ficl's address space.</font> </li>
            <li><b>argument type incompatible with specified
                input parameter, e.g., passing a flag to a word
                expecting an n (3.1 Data types)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl makes no check for
                argument type compatibility. Effects of a
                mismatch vary widely depending on the specific
                problem and operands.</font> </li>
            <li><b>attempting to obtain the execution token,
                (e.g., with 6.1.0070 ', 6.1.1550 FIND, etc.) of a
                definition with undefined interpretation
                semantics</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl returns a valid token,
                but the result of executing that token while
                interpreting may be undesirable.</font> </li>
            <li><b>dividing by zero (6.1.0100 */, 6.1.0110 */MOD,
                6.1.0230 /, 6.1.0240 /MOD, 6.1.1561 FM/MOD,
                6.1.1890 MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD,
                8.6.1.1820 M*/)</b>;</li>
            <li><br>
                <font color="#000000">Results are target procesor
                dependent. Generally, Ficl makes no check for
                divide-by-zero. The target processor will
                probably throw an exception.</font> </li>
            <li><b>insufficient data-stack space or return-stack
                space (stack overflow)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">With FICL_ROBUST (sysdep.h)
                set &gt;= 2, most parameter stack operations are
                checked for underflow and overflow. Ficl does not
                check the return stack.</font> </li>
            <li><b>insufficient space for loop-control parameters</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">No check - Evil results.</font>
            </li>
            <li><b>insufficient space in the dictionary</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl generates an error
                message if the dictionary is too full to create a
                definition header. It checks <tt>ALLOT</tt> as
                well, but it is possible to make an unchecked
                allocation request that overflows the dictionary.</font>
            </li>
            <li><b>interpreting a word with undefined
                interpretation semantics</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl protects all ANS Forth
                words with undefined interpretation semantics
                from being executed while in interpret state. It
                is possible to defeat this protection using '
                (tick) and <tt>EXECUTE</tt>, though.</font> </li>
            <li><b>modifying the contents of the input buffer or
                a string literal (3.3.3.4 Text-literal regions,
                3.3.3.5 Input buffers)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Varies depending on the
                nature of the buffer. The input buffer is
                supplied by ficl's host function, and may reside
                in read-only memory. If so, writing the input
                buffer can ganerate an exception. String literals
                are stored in the dictionary, and are writable.</font>
            </li>
            <li><b>overflow of a pictured numeric output string</b>;</li>
            <li><br>
                In the unlikely event you are able to construct a
                pictured numeric string of more than 255
                characters, the system will be corrupted
                unpredictably. The buffer area that holds
                pictured numeric output is at the end of the
                virtual machine. Whatever is mapped after the
                offending VM in memory will be trashed, along
                with the heap structures that contain it.&nbsp; </li>
            <li><b>parsed string overflow</b>;</li>
            <li><br>
                Ficl does not copy parsed strings unless asked
                to. Ordinarily, a string parsed from the input
                buffer during normal interpretation is left
                in-place, so there is no possibility of overflow.
                If you ask to parse a string into the dictionary,
                as in <tt>SLITERAL</tt>, you need to have enough
                room for the string, otherwise bad things may
                happen. This is not usually a problem.&nbsp; </li>
            <li><b>producing a result out of range, e.g.,
                multiplication (using *) results in a value too
                big to be represented by a single-cell integer
                (6.1.0090 *, 6.1.0100 */, 6.1.0110 */MOD,
                6.1.0570 &gt;NUMBER, 6.1.1561 FM/MOD, 6.1.2214
                SM/REM, 6.1.2370 UM/MOD, 6.2.0970 CONVERT,
                8.6.1.1820 M*/)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Value will be truncated</font>
            </li>
            <li><b>reading from an empty data stack or return
                stack (stack underflow)</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Most stack underflows are
                detected and prevented if FICL_ROBUST (sysdep.h)
                is set to 2 or greater. Otherwise, the stack
                pointer and size are likely to be trashed.</font>
            </li>
            <li><b>unexpected end of input buffer, resulting in
                an attempt to use a zero-length string as a name</b>;&nbsp;</li>
            <li><br>
                <font color="#000000">Ficl returns for a new
                input buffer until a non-empty one is supplied.</font></li>
        </ul>
        <p>The following specific ambiguous conditions are noted
        in the glossary entries of the relevant words:&nbsp; </p>
        <ul>
            <li><b>&gt;IN greater than size of input buffer
                (3.4.1 Parsing)</b></li>
            <li><br>
                Bad Things occur - unpredictable bacause the
                input buffer is supplied by the host program's
                outer loop.&nbsp; </li>
            <li><b>6.1.2120 RECURSE appears after 6.1.1250
                DOES&gt;</b></li>
            <li><br>
                It finds the address of the definition before <tt>DOES&gt;</tt>
            </li>
            <li><b>argument input source different than current
                input source for 6.2.2148 RESTORE-INPUT</b></li>
            <li><br>
                Not implemented&nbsp; </li>
            <li><b>data space containing definitions is
                de-allocated (3.3.3.2 Contiguous regions)</b></li>
            <li><br>
                This is OK until the cells are overwritten with
                something else. The dictionary maintains a hash
                table, and the table must be updated in order to
                de-allocate words without corruption.&nbsp; </li>
            <li><b>data space read/write with incorrect alignment
                (3.3.3.1 Address alignment)</b></li>
            <li><br>
                Target processor dependent. Consequences include:
                none (Intel), address error exception
                (68K).&nbsp; </li>
            <li><b>data-space pointer not properly aligned
                (6.1.0150 ,, 6.1.0860 C,)</b></li>
            <li><br>
                See above on data space read/write
                alignment&nbsp; </li>
            <li><b>less than u+2 stack items (6.2.2030 PICK,
                6.2.2150 ROLL)</b></li>
            <li><br>
                Ficl detects a stack underflow and reports it,
                executing <tt>ABORT,</tt> as long as FICL_ROBUST
                is two or larger.&nbsp; </li>
            <li><b>loop-control parameters not available (
                6.1.0140 +LOOP, 6.1.1680 I, 6.1.1730 J, 6.1.1760
                LEAVE, 6.1.1800 LOOP, 6.1.2380 UNLOOP)</b></li>
            <li><br>
                Loop initiation words are responsible for
                checking the stack and guaranteeing that the
                control parameters are pushed. Any underflows
                will be detected early if FICL_ROBUST is set to
                two or greater. Note however that Ficl only
                checks for return stack underflows at the end of
                each line of text.&nbsp; </li>
            <li><b>most recent definition does not have a name
                (6.1.1710 IMMEDIATE)</b></li>
            <li><br>
                No problem.&nbsp; </li>
            <li><b>name not defined by 6.2.2405 VALUE used by
                6.2.2295 TO</b></li>
            <li><br>
                Ficl's version of <tt>TO</tt> works correctly
                with <tt>VALUE</tt>s, <tt>CONSTANT</tt>s and <tt>VARIABLE</tt>s.&nbsp;
            </li>
            <li><b>name not found (6.1.0070 ', 6.1.2033 POSTPONE,
                6.1.2510 ['], 6.2.2530 [COMPILE])</b></li>
            <li><br>
                Ficl prints an error message and does <tt>ABORT</tt>
            </li>
            <li><b>parameters are not of the same type (6.1.1240
                DO, 6.2.0620 ?DO, 6.2.2440 WITHIN)</b></li>
            <li><br>
                No check. Results vary depending on the specific
                problem.&nbsp; </li>
            <li><b>6.1.2033 POSTPONE or 6.2.2530 [COMPILE]
                applied to 6.2.2295 TO</b></li>
            <li><br>
                The word is postponed correctly.&nbsp; </li>
            <li><b>string longer than a counted string returned
                by 6.1.2450 WORD</b></li>
            <li><br>
                Ficl stores the first FICL_STRING_MAX-1 chars in
                the destination buffer. (The extra character is
                the trailing space required by the standard.
                Yuck.)&nbsp; </li>
            <li><b>u greater than or equal to the number of bits
                in a cell (6.1.1805 LSHIFT, 6.1.2162 RSHIFT)</b></li>
            <li><br>
                Depends on target process or and C runtime
                library implementations of the &lt;&lt; and
                &gt;&gt; operators on unsigned values. For I386,
                the processor appears to shift modulo the number
                of bits in a cell.&nbsp; </li>
            <li><b>word not defined via 6.1.1000 CREATE (6.1.0550
                &gt;BODY, 6.1.1250 DOES&gt;)</b></li>
            <li><br>
                <b>words improperly used outside 6.1.0490 &lt;#
                and 6.1.0040 #&gt; (6.1.0030 #, 6.1.0050 #S,
                6.1.1670 HOLD, 6.1.2210 SIGN)</b> <br>
                Don't. <tt>CREATE</tt> reserves a field in words
                it builds for <tt>DOES&gt;</tt>to fill in. If you
                use <tt>DOES&gt;</tt> on a word not made by <tt>CREATE</tt>,
                it will overwrite the first cell of its parameter
                area. That's probably not what you want.
                Likewise, pictured numeric words assume that
                there is a string under construction in the VM's
                scratch buffer. If that's not the case, results
                may be unpleasant.</li>
        </ul>
        <h3>Locals Implementation-defined options</h3>
        <ul>
            <li><b>maximum number of locals in a definition
                (13.3.3 Processing locals, 13.6.2.1795 LOCALS|)</b></li>
            <li><br>
                Default is 16. Change by redefining
                FICL_MAX_LOCALS, defined in sysdep.h</li>
        </ul>
        <h3>Locals Ambiguous conditions</h3>
        <ul>
            <li><b>executing a named local while in
                interpretation state (13.6.1.0086 (LOCAL))</b></li>
            <li><br>
                Locals can be found in interpretation state while
                in the context of a definition under
                construction. Under these circumstances, locals
                behave correctly. Locals are not visible at all
                outside the scope of a definition.&nbsp; </li>
            <li><b>name not defined by VALUE or LOCAL
                (13.6.1.2295 TO)</b></li>
            <li><br>
                See the CORE ambiguous conditions, above (no
                change)</li>
        </ul>
        <h3>Programming Tools Implementation-defined options</h3>
        <ul>
            <li><b>source and format of display by 15.6.1.2194
                SEE</b></li>
            <li><br>
                SEE de-compiles definitions from the dictionary.
                Because Ficl words are threaded by their header
                addresses, it is very straightforward to print
                the name and other characteristics of words in a
                definition. Primitives are so noted. Colon
                definitions are decompiled, but branch target
                labels are not reconstructed. Literals and string
                literals are so noted, and their contents
                displayed.</li>
        </ul>
        <h3>Search Order Implementation-defined options</h3>
        <ul>
            <li><b>maximum number of word lists in the search
                order (16.3.3 Finding definition names,
                16.6.1.2197 SET-ORDER)</b>&nbsp;</li>
            <li><br>
                Defaults to 16. Can be changed by redefining
                FICL_DEFAULT_VOCS, declared in sysdep.h </li>
            <li><b>minimum search order (16.6.1.2197 SET-ORDER,
                16.6.2.1965 ONLY)</b>&nbsp;</li>
            <li><br>
                Equivalent to <tt>FORTH-WORDLIST 1 SET-ORDER</tt></li>
        </ul>
        <h3>Search Order Ambiguous conditions</h3>
        <ul>
            <li><b>changing the compilation word list (16.3.3
                Finding definition names)</b></li>
            <li><br>
                Ficl stores a link to the current definition
                independently of the compile wordlist while it is
                being defined, and links it into the compile
                wordlist only after the definition completes
                successfully. Changing the compile wordlist
                mid-definition will cause the definition to link
                into the <i>new</i> compile wordlist.&nbsp; </li>
            <li><b>search order empty (16.6.2.2037 PREVIOUS)</b></li>
            <li><br>
                Ficl prints an error message if the search order
                underflows, and resets the order to its default
                state.&nbsp; </li>
            <li><b>too many word lists in search order
                (16.6.2.0715 ALSO)</b></li>
            <li><br>
                Ficl prints an error message if the search order
                overflows, and resets the order to its default
                state.</li>
        </ul>
        </td>
    </tr>
</table>

<hr>

<p><a name="links"></a></p>

<p>For more information </p>

<ul>
    <li><a href="http://www.taygeta.com/ficl.html">Web home of
        ficl</a></li>
    <li><a
        href="ftp://ftp.taygeta.com/pub/Forth/Compilers/native/misc/ficl204/ficl204.zip"><b>Download
        ficl 2.04</b></a></li>
    <li><a
        href="ftp://ftp.taygeta.com/pub/Forth/Compilers/native/misc/ficl204/ficlwin.zip"><b>Download
        ficlWin</b></a><b> (not for resale. please contact me for
        resale license arrangements)</b></li>
    <li><a href="ficlddj.pdf">Manuscript of Ficl article for
        January 1999 Dr. Dobb's Journal</a></li>
    <li><a href="jwsforml.pdf">1998 FORML Conference paper</a></li>
    <li><a href="http://www.taygeta.com/forthlit.html">Forth
        literature</a></li>
    <li><ul>
            <li><a
                href="http://www.softsynth.com/pforth/pf_tut.htm">Phil
                Burk's Forth Tutorial</a></li>
            <li><a href="http://www.taygeta.com/forth/dpans.html">Draft
                Proposed American National Standard for Forth</a></li>
        </ul>
    </li>
    <li><a href="http://www.forth.org">Forth Interest Group</a></li>
</ul>

<h2><a name="includesficl"></a>Some software that uses ficl</h2>

<ul>
    <li><a href="http://www.freebsd.org/">FreeBSD</a> boot loader</li>
    <li><a href="http://www.pagesz.net/~sessoms/debuffer/">Palm
        Pilot Debuffer</a> (Eric Sessoms)</li>
    <li><a href="http://www.swcp.com/~jchavez/osmond.html">Mac PC
        Board Layout tool</a> (J Chavez)</li>
    <li><a href="http://www.netcomsystems.com">NetCom Systems</a>
        ML7710 (Martin Usher)</li>
</ul>

<hr>

<table border="0" cellspacing="3" width="600" cols="1">
    <tr>
        <td><h2><a name="lawyerbait"></a>DISCLAIMER OF WARRANTY
        and LICENSE</h2>
        <p><i>Ficl is freeware. Use it in any way that you like,
        with the understanding that the code is not supported.</i>
        </p>
        <p>Any third party may reproduce, distribute, or modify
        the ficl software code or any derivative works thereof
        without any compensation or license, provided that the
        original author information and this disclaimer text are
        retained in the source code files. The ficl software code
        is provided on an &quot;as is&quot; basis without
        warranty of any kind, including, without limitation, the
        implied warranties of merchantability and fitness for a
        particular purpose and their equivalents under the laws
        of any jurisdiction.&nbsp; </p>
        <p>The FiclWin distribution, a derivative work of the
        ficl source code, is hereby licensed for unrestricted
        non-commercial use under the ficl license provided the
        user notifies the author (John Sadler) in writing or by
        electronic mail or their intended use of the FiclWin
        sources. You may freely redistribute the FiclWin
        distribution provided it contains this notice and adheres
        to all other provisions of this license. </p>
        <p>Reselling the FiclWin source code, executable, or
        works derived from the FiclWin source code is prohibited
        under this license. Please contact me directly in order
        to discuss license terms for commercial use and
        distribution.</p>
        <p>I am interested in hearing from anyone who uses ficl.
        If you have a problem, a success story, a defect, an
        enhancement request, or if you would like to contribute
        to the ficl release, please <a
        href="mailto:john_sadler@alum.mit.edu">send me email</a>.&nbsp;</p>
        </td>
    </tr>
</table>
</body>
</html>